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abstract

Input/output analysis: graphical and algorithmic methods
Thomas Chaffey

This thesis describes new methods in input/output systems theory.
The first part of this thesis develops a novel graphical method for the stability

analysis of feedback systems. The Scaled Relative Graph (SRG), a recent concept
from monotone operator theory, is shown to generalize the classical Nyquist diagram
of an LTI transfer function, and may be plotted for arbitrary nonlinear operators.
Applying the SRG to the analysis of feedback interconnections leads to a graphical
incremental stability theorem, which unifies and generalizes the Nyquist criterion,
circle criterion, incremental passivity theorem, incremental small gain theorem and
incremental secant condition. A novel special case of this theorem concerns systems
which only violate the assumptions of the incremental passivity theorem when their
incremental gains are small. This captures systems whose incremental passivity is
destroyed by common effects such as delay and saturation.

The second part of this thesis develops algorithmic methods for solving nonlinear
circuits composed of monotone elements. Monotonicity is a generalization of the
linear property of passivity, and is a fundamental property in the theory of large-scale
convex optimization. Modern splitting methods, which invert sums of operators,
are shown to correspond to the series or parallel interconnection of circuit elements
which are monotone, and may be used to solve the steady-state behavior of such
circuits. Consideration of circuits with arbitrary series/parallel interconnections
leads to a new splitting algorithm, the nested forward-backward algorithm, which inverts
operators composed of sums and inverses.

Finally, these methods are extended to circuits composed of the difference of
monotone elements. The steady-state behavior of such circuits can be solved via an
adaptation of Difference of Convex (DC) Programming. Such circuits include the
classical van der Pol oscillator and the FitzHugh-Nagumo model of an excitable
neuron, which both consist of an LTI transfer function in parallel with monotone
and anti-monotone nonlinear resistors. A new algorithm, the difference-of-monotone
Douglas-Rachford algorithm, is proposed, which matches the mixed-feedback structure
of these circuits.
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1I N T R O D U C T I O N

Nonlinear effects are ubiquitous in electrical circuits, and nonlinear behaviors such as
switches and oscillations are often fundamental to their operation. Many such nonlinear
effects can be understood in terms of a mixture of positive and negative feedback channels
– positive feedback creates a switch; negative feedback regulates to equilibrium. Control
theory is the study of feedback, yet control theory has had a modest impact on nonlinear
circuit theory.

The gap between nonlinear control theory and nonlinear circuit theory is the mo-
tivation for this thesis, which describes new methods in input/output systems theory.
These new methods arise from revisiting classical input/output systems theory with
methods from the modern theory of mathematical optimization – in particular, the theory
of monotone operators. Both input/output systems theory and monotone operator theory
originated in the study of analog electrical circuits, although such applications have been
largely forgotten. The study of analog electrical circuits is, however, timely – advances in
memristive semiconductor devices has seen a surge of interest in analog artificial neural
networks [1]–[3], and the past several years has seen a boom in interest in neuromorphic
circuits [4]–[8].

Input/output analysis is the study of systems which map an input signal to an
output signal. Feedback systems have a natural input/output structure, and the earliest
results in the theory of systems and control, such as the Nyquist criterion [9], Bode’s
integral relations [10] and root locus [11] pertain to a class of linear, time invariant
input/output operators called transfer functions. These tools were developed for the
study of feedback amplifiers in telecommunication systems. While the high dimensional
differential equations were difficult to analyse with current tools, the Nyquist and Bode
diagrams allowed the behavior of such systems to be neatly summarized [12]. Transfer
functions also arise in the early theory of electrical networks; for example, in the study of
passive network synthesis by Cauer, Brune, Bott and Duffin [13]–[15]. Input/output theory
is naturally suited to the study of linear, time invariant electrical circuits, synthesised
by series/parallel interconnection of inductors, capacitors and resistors. Indeed, the
celebrated passive synthesis result of Bott and Duffin [15] gives a correspondence between
manipulations to a transfer function and circuit interconnections.

Nonlinear input/output systems theory was inspired by Norbert Wiener [16], who
first suggested functional analysis as a tool for studying feedback systems. Wiener
inspired a line of research on functional analysis throughout the 1950s [17]–[21]. The
first major progress, however, was the thesis of George Zames [22], which introduced the
method of functional iteration to systems theory. Other important early work includes
that of Sandberg [23] and Willems [24]. The motivation for nonlinear input/output
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systems theory was the study of nonlinear electrical circuits; it was desired to extend the
elegant theory of linear time invariant (LTI) filters to nonlinear filters. Zames’ archetypical
nonlinear input/output system is an amplifier.

While nonlinear input/output systems theory originally aimed at extending the power
of transfer function methods to nonlinear circuits, it has never had a great impact in
circuit theory, and after early momentum in the 1960s and 1970s, the theory has declined
in popularity. One reason for this is certainly historical – the 1960s and 1970s mark the
rise of state space theory, and in the subsequent decades, systems and control focussed
on the study of mechanical systems, for which the state space paradigm is natural. Other
reasons pertain to the theory itself: while LTI state space theory comes equipped with
closed-form solutions to optimal control problems [25] and computationally tractable
methods from the theory of linear matrix inequalities [26], and LTI input/output theory
comes with the powerful graphical tools of the Nyquist and Bode diagrams [9], nonlinear
input/output theory lacks general algorithmic or graphical methods, and furthermore is
riddled with technical difficulties to do with causality and invertibility. Speaking of the
latter, Jan Willems writes [27]:

With arrow-ridden signal flow diagrams, one does not get off the ground
for modelling even simple electrical circuits, the paradigmatic example of
interconnected systems.

This motivated Willems’ development of behavioral theory [28], which models systems as
bundles of trajectories, without imposing conditions such as causality or an input/output
structure.

This thesis contributes new methods to nonlinear input/output systems theory which
aim to address some of its short-comings: the lack of general graphical tools, and the lack
of algorithmic tractability. The spirit of Willems’ behavioral theory is retained: systems
are modelled as relations, or catalogues of input/output pairs, which are readily invertible,
by simply exchanging the “input” and “output” labels.

Zames’ interest was in studying systems through bulk properties rather than detailed
models [29]. The two central properties are gain (signal amplification) and passivity (en-
ergy dissipation). A choice must be made between studying the worst-case, or incremental,
gain and passivity, measured between any two pairs of input/output trajectories, or to
measure gain and passivity with respect to a nominal trajectory. Only in the linear case
are the two equivalent, and the zero trajectory can always serve as the nominal trajectory.
In nonlinear system analysis, the choice of a nominal trajectory is often arbitrary. If a
system has finite gain (measured from zero), it is bounded – the output never explodes. If a
system has finite incremental gain, it is continuous – small changes in the input give small
changes in the output. In his thesis, Zames emphasised the latter property, continuity:

It is now desired to compute or bound the norm of the output of a system
when that of the input is known. In order to do this, it is necessary to know the
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amplification of the system, which will differ, in general, for every input. We
are especially interested in the largest incremental amplification that a system
is capable of. The maximum incremental gain of an operator is therefore
defined as the largest possible ratio of the norm of the difference between any
two output to that between the inputs.

Several years later, Zames writes [30]:

In order to behave properly an input/output system must usually have two
properties:

1. Bounded intputs must produce bounded outputs – i.e., the system must
be nonexplosive.

2. Outputs must not be critically sensitive to small changes in inputs –
changes such as those caused by noise.

Despite this early emphasis on continuity, input/output theory has subsequently
focussed almost exclusively on properties measured from zero – perhaps due to the focus
on regulating systems to a desired equilibrium behavior. If, however, the solution of
interest is not an equilibrium, or one is interested in questions of sensitivity, it becomes
essential to study incremental properties. One salient example is the sensitivity of neural
network classifiers to so-called adversarial examples – a minor change in the input, for
example, the addition of some noise, results in a misclassification with high confidence
[31]. This phenomenon motivates methods for training neural networks with Lipschitz
constants, or, in the language of systems theory, finite incremental gain [32], [33].

One area where incremental analysis has thrived is in the theory of optimization. It is
natural in optimization to study properties defined between arbitrary pairs of trajectories,
as one cannot know the special trajectory of interest (the solution) until the optimization
problem is solved. One of the central properties in the theory of optimization, and also
in many of the developments of this thesis, is monotonicity, a generalization of “energy
dissipation”. Duffin, in 1946, studied circuits with quasi-linear resistors – resistors with
non-decreasing i − v characteristic. These resistors were a prototypical monotone element.
Other related properties appear in the work of Golomb [34], Zarantonello [35] and Dolph
[36], but it was Minty [37]–[39] who refined the concept of quasi-linearity to found
the theory of monotonicity, again in the context of nonlinear circuits. Further work on
monotonicity in nonlinear circuits was done by Desoer and Wu [40], before the influential
paper of Rockafellar [41] established monotonicity as a fundamental property in the
theory of optimization. Monotonicity has since become a pillar of the theory of convex
optimization [42]–[47], forming the basis of a large body of work on tractable first order
methods for large-scale and nonsmooth optimization problems, which have seen a surge
of interest in the last decade. However, the physical significance of maximal monotonicity
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in nonlinear circuit theory has been somewhat forgotten. This thesis revisits nonlinear
circuit theory with modern developments in monotone operator theory.

This thesis is divided in two parts: graphical methods and algorithmic methods.
Chapter 2 describes graphical methods for studying the incremental properties of in-
put/output systems connected in feedback. The Scaled Relative Graph (SRG) [48], a new
tool in the theory of monotone operators, is shown to be a generalization of the classical
Nyquist diagram [9] which may be plotted for nonlinear operators. This opens a new
avenue for the graphical analysis of the properties of nonlinear operators. We apply the
SRG to incremental stability analysis, and give a simple graphical stability test for stable
nonlinear operators in feedback which encompasses results such as the Nyquist crite-
rion, incremental circle criterion, incremental small gain theorem, incremental passivity
theorem and incremental secant condition.

Chapter 3 describes algorithmic methods for solving nonlinear circuits formed from
the series and parallel interconnection of devices which are monotone. This represents
a generalization of the linear theory of passivity which retains a connection between
physics and computation – in this case, the connection arises from the equivalence
between the splitting methods of modern optimization theory and series/parallel port
interconnections of circuit theory. A new splitting algorithm is presented which matches
an arbitrary series/parallel structure, and may be used to efficiently solve large scale
circuits with arbitrary series/parallel structure.

Chapter 4 extends these methods to circuits formed by the difference of monotone
circuits. This encompasses circuits such as the van der Pol oscillator and FitzHugh
Nagumo model, which exhibit steady state oscillatory behavior. A generalization of
the Douglas-Rachford splitting algorithm is developed which suits the mixed feedback
structure of these two circuits: a passive, LTI network in feedback with the difference of
two monotone operators.

In the remainder of this chapter, we give a brief overview of the mathematical
preliminaries in input/output systems theory and monotone operator theory which will
be used throughout the thesis.

1 .1 mathematical background

1 .1 .1 Signal spaces, operators and relations

A Hilbert space H is a vector space equipped with an inner product, ⟨⋅∣⋅⟩ ∶ H ×H → C,
and an induced norm ∥x∥ ∶= √⟨x∣x⟩.

We will pay particular attention to Lebesgue spaces of square-integrable functions.
Given a time axis T, which is one of (−∞,∞), [0,∞) or [0, T], and a field F ∈ {R, C}, we
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1 .1 mathematical background

define the space Ln
2,T(F) by the set of signals u ∶ R≥0 → Fn such that

∥u∥ ∶= (∫
T

ū(t)u(t)dt) 1
2 <∞,

where ū(t) denotes the conjugate transpose of u(t). The inner product of u, y ∈ Ln
2,T(F) is

defined by

⟨u∣y⟩ ∶= ∫
T

ū(t)y(t)dt .

The Fourier transform of u ∈ Ln
2,T(F) is defined as

û(jω) ∶= ∫
T

e−jωtu(t)dt .

We omit the dimension, field and time axis when they are immaterial or clear from
context.

The discrete-time counterpart of L2,T is denoted by l2,T, the space of square-summable
sequences:

ΣTu⊺(t)u(t) <∞,

where T ⊆ Z. Again, this is a Hilbert space with inner product

⟨u∣y⟩ ∶= ΣTu⊺(t)y(t)
and induced norm ∥u∥ ∶= √⟨u∣u⟩.

For some T ∈ R≥0, define the truncation operator PT by

(PTu)(t) ∶= ⎧⎪⎪⎨⎪⎪⎩
u(t) t ≤ T,

0 t > T,

where t ∈ R≥0 and u is an arbitrary signal. Define the extension of Ln
2,[0,∞)(F) [30], [49, p.

22], [50, p. 172] to be the space

Ln
2,e(F) ∶= {u ∶ R≥0 → Fn ∣ ∥PTu∥ <∞ for all T ∈ R≥0} .

An operator, or system, on a space X , is a possibly multi-valued map R ∶ X → X .
The identity operator, which maps u ∈ X to itself, is denoted by I. We denote the
domain of an operator R by dom R. The graph, or relation, of an operator, is the set{u, y ∣ u ∈ dom R, y ∈ R(u)} ⊆ X ×X . We use the notions of an operator and its relation
interchangeably, and denote them in the same way. The relation of an operator may be
thought of as an input/output partition of a behavior [51, Def. 3.3.1].

The usual operations on functions can be extended to relations:

S−1 = {(y, u) ∣ y ∈ S(u)}
S + R = {(x, y + z) ∣ (x, y) ∈ S, (x, z) ∈ R}

SR = {(x, z) ∣ ∃ y s.t. (x, y) ∈ R, (y, z) ∈ S}.

Note that S−1 always exists, but is not an inverse in the usual sense. In particular, it is in
general not the case that S−1S = I.

An operator R on L2 or L2,e is said to be causal if PT(R(u)) = PT(R(PTu)) for all u.

17



introduction

1 .1 .2 Incremental input/output systems theory

Incremental properties feature heavily in Desoer and Vidyasagar’s classic text [50]. The
general pattern is that requiring a property to be verified for every possible input, rather
than just a single distinguished input (u = 0, for example), leads to much stronger results,
often comparable to the results that may be proved for linear systems. This is perhaps
unsurprising, as any property of a linear system is automatically incremental.

In this section, we define the input/output properties of systems considered through-
out the thesis. We begin with a definition of incremental stability.

Definition 1.1. Let R ∶ L2,e → L2,e. The incremental L2 gain of R is

µ ∶= lim
T→∞

sup
u1,u2∈dom R

∥PTy1 − PTy2∥∥PTu1 − PTu2∥ ,

where y1 ∈ R(PTu1), y2 ∈ R(PTu2). If µ <∞, R is said to have finite incremental L2 gain, or
be incrementally L2 stable. ⌟

The second class of properties relate to passivity.

Definition 1.2. Let R ∶ L2,e → L2,e. Let ⟨u∣y⟩T ∶= ∫ T
0 u

⊺(t)y(t)dt. Then:

1. R is said to be incrementally passive if

⟨u1 − u2∣y1 − y2⟩T ≥ 0

for all T ≥ 0, all u1, u2 ∈ dom R and y1 ∈ R(u1), y2 ∈ R(u2).

2. R is said to be λ-input-strict incrementally passive if

⟨u1 − u2∣y1 − y2⟩T ≥ λ∥PTu1 − PTu2∥2

for all T ≥ 0, all u1, u2 ∈ dom R and y1 ∈ R(u1), y2 ∈ R(u2).

3. R is said to be γ-output-strict incrementally passive if

⟨u1 − u2∣y1 − y2⟩T ≥ γ∥PTy1 − PTy2∥2

for all T ≥ 0, all u1, u2 ∈ dom R and y1 ∈ R(u1), y2 ∈ R(u2). ⌟
1 .1 .3 Monotone operator theory

Monotonicity on a Hilbert space H is defined as follows.

Definition 1.3. A relation S ⊆H ×H is called monotone if

⟨u1 − u2∣y1 − y2⟩ ≥ 0

for any (u1, y1), (u2, y2) ∈ S. A monotone relation is called maximal if it is not properly
contained in any other monotone relation. ⌟
18



1 .1 mathematical background

By way of example, a relation S ⊆ R×R is monotone if its graph is non-decreasing,
and maximal if its graph has no endpoints. Note that this definition refers to monotonicity
in the operator theoretic sense, and this is distinct from the notion of monotonicity in the
sense of partial order preservation by a state-space system (see, for example, [52]).

Definition 1.4. A relation S has a Lipschitz constant of λ > 0, or is λ-Lipschitz if, for all(u1, y1), (u2, y2) ∈ S, ∥y1 − y2∥ ≤ λ∥u1 − u2∥.

If λ < 1, S is called a contraction. If λ = 1, S is called nonexpansive. ⌟
Note that if S is λ-Lipschitz, it is also λ̄-Lipschitz for all λ̄ > λ.

Definition 1.5. Given ϑ ∈ (0, 1), a relation S is said to be ϑ-averaged if S = (1− ϑ)I + ϑG,
where I is the identity relation and G is some nonexpansive relation. ⌟
Definition 1.6. Given µ > 0, a relation S is µ-coercive or µ-strongly monotone if, for all(u1, y1), (u2, y2) ∈ S, ⟨u1 − u2∣y1 − y2⟩ ≥ µ∥u1 − u2∥2.

S is called µ-hypomonotone in the case that µ < 0. If the sign of µ is unknown, we simply
say S is µ-monotone. ⌟
Definition 1.7. Given γ > 0, a relation S is γ-cocoercive if, for all (u1, y1), (u2, y2) ∈ S,

⟨u1 − u2∣y1 − y2⟩ ≥ γ∥y1 − y2∥2.

S is called γ-cohypomonotone in the case that γ < 0. ⌟
It is seen immediately that F is µ-coercive if and only if F−1 is µ-cocoercive. It also

follows from the Cauchy-Schwarz inequality that F has a Lipschitz constant of 1/γ if F
is γ-cocoercive. Finally, if A is µ-coercive (resp. γ-cocoercive) and B is monotone, A + B
is is µ-coercive (resp. γ-cocoercive). For more details on these properties, we refer the
reader to [44, §2.2] and [53].

Monotone operator theory is closely related to the classical input/output theory of
nonlinear systems. All of the properties studied in the theory of monotone operators
correspond to a property in input/output system theory, the difference being that the
former are defined for an arbitrary Hilbert space, while the latter are defined on L2 or
L2,e.

Table 1.1 shows these equivalences. In the remainder of this thesis, we adopt “positiv-
ity” for operators on L2 or l2, “monotonicity” for operators on other Hilbert spaces, and
“passivity” for operators on L2,e or l2,e, and when referring to the theorems classically
referred to as passivity theorems [50, Chapter 6]. These different names have historically
been applied in different fields, and all refer to essentially the same property - the
monotonicity of an operator (or family of operators) on a Hilbert space. Passivity is a
stronger property than positivity, the two coinciding only when the operator is causal [50,
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Lemma 2, p. 200]. The methods of this thesis apply equally well to causal and non-causal
operators, and no assumptions, nor guarantees, of causality are made. This allows the
results to apply verbatim to applications where causality is irrelevant, such as spatial
dynamics. If causality is important, however, it must be verified by additional analysis.

property L2,[0,∞) L2,e Hilbert

∥y1 − y2∥ ≤ µ∥u1 − u2∥ finite incremental
gain

finite incremental
gain

Lipschitz

⟨u1 − u2∣y1 − y2⟩ ≥ 0 incremental posi-
tivity

incremental pas-
sivity

monotonicity

⟨u1 − u2∣y1 − y2⟩ ≥ λ∥u1 − u2∥2 incremental
input-strict posi-
tivity

incremental
input-strict pas-
sivity

strong
mono-
tonicity or
coercivity

⟨u1 − u2∣y1 − y2⟩ ≥ γ∥y1 − y2∥2 incremental
output-strict
positivity

incremental
output-strict
passivity

cocoercivity

Table 1.1: A partial bilingual dictionary from input/output system theory to monotone operator
theory. The first column gives properties between pairs of inputs u1, u2 and the corresponding
outputs y1, y2. Greek letters denote positive scalars. The second and third columns give the system
theory names of properties of operators on either L2,[0,∞)

or L2,e, as defined by [50]. The fourth
column gives the names of these properties in monotone operator theory, for operators on an
arbitrary Hilbert space – see, for example, [48].
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2S Y S T E M A N A LY S I S W I T H S C A L E D R E L AT I V E G R A P H S

abstract

We use the recently introduced concept of a Scaled Relative Graph (SRG) to
develop a graphical analysis of input-output properties of feedback systems. The
SRG of a nonlinear operator generalizes the Nyquist diagram of an LTI system. In
the spirit of classical control theory, important robustness indicators of nonlinear
feedback systems are measured as distances between SRGs.

2 .1 introduction

The graphical analysis of a feedback system via the Nyquist diagram of its return ratio
is a foundation of classical control theory. It underlies the analysis concept of stability
margins and the design concept of loop shaping, which themselves provide the grounds
for the gap metric [54], [55] and H∞ control [56].

The Nyquist diagram also has a fundamental place in the theory of nonlinear systems
of the Lur’e form (that is, systems composed of an LTI forward path in feedback with a
static nonlinearity). The circle and Popov criteria allow the stability of a Lur’e system
to be proved by verifying a geometric condition on the Nyquist diagram of the LTI
component [50]. The geometric condition is determined by the properties of the static
nonlinearity. Notably, only the Nyquist diagram of the LTI component is defined, owing
to a lack of a suitable definition of phase for nonlinear systems. At best, the frequency
response of a nonlinear system may be computed approximately. The describing function
[57]–[59] gives rise to a family of Nyquist curves for a nonlinearity, parameterized by
the amplitude of the input. Other efforts to generalize frequency response to nonlinear
systems include the work of Pavlov, van de Wouw, and Nijmeijer [60] on Bode diagrams
for convergent systems, and two recently introduced notions of nonlinear phase by Chen
et al. [61], [62].

In this chapter, we show that the Scaled Relative Graph of Ryu, Hannah, and Yin
[48] generalizes the Nyquist diagram of an LTI transfer function, and may be plotted
for nonlinear input/output operators. The SRG has been introduced in the theory of
optimization to visualize incremental properties of nonlinear operators, that is, properties
that are measured between pairs of input/output trajectories, such as Lipschitz continuity
and maximal monotonicity. Such properties may be verified by checking geometric condi-
tions on the SRG of an operator. Algebraic manipulations to the operator correspond to
geometric manipulations to the SRG. The SRG gives rise to simple, intuitive and rigorous
proofs of the convergence of many algorithms in convex optimization. Furthermore, the
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tool is particularly suited to proving tightness of convergence bounds, and has been used
to prove novel tightness results [Huang2020b, 48].

The SRG allows the classical techniques of the Nyquist diagram to be applied to
nonlinear input/output feedback systems, giving graphical methods to determine in-
cremental properties, such as finite incremental gain and incremental passivity. In Sec-
tion 2.3.1, we prove a version of the Nyquist criterion for stable nonlinear operators,
recovering the familiar “leave the point -1 on the left” rule of thumb for stable LTI transfer
functions. The distance from the SRG to the point −1 is a nonlinear stability margin; like
the classical stability margin, it is the inverse of the incremental gain of the sensitivity
operator. In Section 2.3.2, we show that placing a second system in the return path of
the feedback interconnection corresponds to inflating the −1 point to the negative of the
SRG of the second system. This allows a nonlinear robustness margin to be defined as
the distance between two SRGs - the margin is the inverse of the incremental gain of the
feedback interconnection. This result encompasses the incremental circle, small gain and
passivity theorems [30], [50], [63], and furthermore allows an incremental gain bound to
be calculated.

The idea of proving stability by showing that two graphs are separated is not new,
and indeed is the basis of the line of research on the gap and related metrics [54], [55],
[64], [65]. Georgiou and Smith [66] define robustness margins for nonlinear systems by
calculating the distance between the graphs of two input/output operators. Analysis
using Integral Quadratic Constraints [67] also relies on showing the separation of two
graphs [68], and unifies earlier results on using multipliers to allow the passivity theorem
to be applied to feedback interconnections of non-passive systems [69]–[71]. The primary
advantage of SRG techniques is the ability to visualize margins graphically. Furthermore,
SRGs pertain to incremental input-output properties, whereas classical graph-based
methodologies have focussed on non-incremental properties. For instance, L2 stability
only guarantees boundedness of the input-output operator, whereas incremental L2

stability ensures continuity of the operator. Efforts to prove continuity using IQCs and
multipliers have been hindered by the limitations of large classes of dynamic multipliers
for incremental analysis [72].

Sections 2.4 and 2.5 give explicit characterizations of the SRGs of several important
classes of systems. In Section 2.4, we show that the SRG of an LTI transfer function
is the convex hull of its Nyquist diagram under a particular change of coordinates. In
Section 2.5, we derive a bound on the SRG of a static nonlinearity which is incrementally
in a sector. This bound is closely related to the circles of the incremental circle criterion.
We then show that if the characteristic curve of the nonlinearity contains a point where
the slope switches from one extreme to the other, the SRG of the nonlinearity fills this
bounding region. This gives a precise characterization of the SRGs of the saturation
nonlinearity and the rectified linear unit (ReLU), and the limiting cases of the ideal relay
and diode.

In Section 2.7, we study cyclic feedback systems, and give an SRG for the cascade of
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n output-strict incrementally passive operators. Consideration of the gain margin gives
rise to the incremental version of the secant condition [73]–[75], and gives a geometric
interpretation to the original result. In Sections 2.6 and 2.8, we show that SRG techniques
can be used to study feedback systems with pure delay. Finally, in Section 2.9, we define
a property that describes systems which only violate incremental positivity when their
incremental gain is small, and prove a relaxation of the incremental passivity theorem
for such systems. We begin in Section 2.2 by formally introducing the SRG.

2 .2 scaled relative graphs

We define SRGs in the same way as Ryu, Hannah, and Yin [48], with the minor modifica-
tion of allowing complex valued inner products.

Let L be a Hilbert space. The angle between u, y ∈ L is defined as

∠(u, y) ∶= acos
Re ⟨u∣y⟩∥u∥∥y∥ .

Let R ∶ L→ L be an operator. Given u1, u2 ∈ U ⊆ L, u1 ≠ u2, define the set of complex
numbers zR(u1, u2) by

zR(u1, u2) ∶={ ∥y1 − y2∥∥u1 − u2∥ e±j∠(u1−u2,y1−y2)

∣ y1 ∈ R(u1), y2 ∈ R(u2)}.

If u1 = u2 and there are corresponding outputs y1 ≠ y2, then zR(u1, u2) is defined to be{∞}. If R is single valued at u1, zR(u1, u1) is the empty set.
The Scaled Relative Graph (SRG) of R over U ⊆ L is then given by

SRGU(R) ∶= ⋃
u1,u2∈U

zR(u1, u2).

If U = L, we write SRG (R) ∶= SRGL(R).
If R is linear and dom R is a linear subspace of L, Ru1 − Ru2 = R(u1 − u2) = Rv for

some v ∈ dom R, and we can define

zR(v) ∶= ∥Rv∥∥v∥ e±j∠(v,Rv)

and

SRG dom R(R) ∶= {zR(v)∣v ∈ dom R, v ≠ 0} .

In the special case that R is linear and time invariant with transfer function R(s), and
v(t) = ejωt, limT→∞ ∥R(PTv)∥/∥PTv∥ = ∣R(jω)∣ and limT→∞∠(PTv, R(PTv)) = ∣arg R(jω)∣.
Thus the gain and phase of the SRG generalize the classical notions of the gain and phase
of an LTI transfer function.
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2 .2 .1 System properties from SRGs

If A is a class of operators, we define the SRG of A by

SRG (A) ∶= ⋃
R∈A

SRG (R).

Note that a class of operators can be a single operator.
A class A, or its SRG, is called SRG-full if

R ∈ A ⇐⇒ SRG (R) ⊆ SRG (A).

By construction, the implication R ∈ A Ô⇒ SRG (R) ⊆ SRG (A) is true. The value of
SRG-fullness is in the reverse implication: SRG (R) ⊆ SRG (A) Ô⇒ R ∈ A. This allows
class membership to be tested graphically. If A is the class of systems with a particular
system property, SRG-fullness of A allows this property to be verified for a particular
operator R by plotting its SRG. If SRG (R) ⊆ SRG (A), R has the property.

The following proposition gives the SRGs of the classical system properties introduced
in Section 1.1.2.

Proposition 2.1. The SRGs of incrementally positive systems (top left), input-strict incrementally
positive systems (top right), output-strict incrementally positive systems (bottom right) and
incrementally L2 bounded systems (bottom left) are shown below.

Im

Re

Im

Re

Im

Re

Im

Re

µ

λ

1/γ

〈u1 − u2|y1 − y2〉 ≥ 0

‖y1 − y2‖ ≤ µ‖u1 − u2‖

〈u1 − u2|y1 − y2〉 ≥ λ‖u1 − u2‖2

〈u1 − u2|y1 − y2〉 ≥ γ‖y1 − y2‖2

All of these classes are SRG-full.

Proof. These SRGs are proved in [48], and all of the shapes follow from quick calculations.
SRG-fullness follows from [48, Thm. 3.5].

SRG-fullness of the classes of Proposition 2.1 means, for example, that if the SRG of a
system lies in the right half plane, the system is incrementally positive, and if the SRG of
a system is bounded, the system has finite incremental L2 gain. These are reminiscent of
the facts that an LTI system is passive if its Nyquist diagram lies in the right half plane,
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2 .2 scaled relative graphs

and has finite H∞ norm if its Nyquist diagram is bounded. We will show in Section 2.4
that Proposition 2.1 is indeed a generalization of these classical properties.

The properties of finite incremental L2 gain and incremental positivity are particular
examples of incremental Integral Quadratic Constraints (IQCs) [67]. A striking corollary
of Ryu, Hannah, and Yin [48, Thm. 3.5] is that any SRG defined by a soft incremental
IQC is SRG-full.

Proposition 2.2. Let ui(t) denote the input to an arbitrary operator on L2, and yi(t) denote a
corresponding output. Let ∆u = u1 − u2 and ∆y = y1 − y2, and x̂(ω) denote the Fourier transform
of signal x(t). Then the classes of operators which obey either of the constraints

∫ ∞

−∞

⎛⎜⎜⎜⎝
∆û(ω)
∆ŷ(ω)

⎞⎟⎟⎟⎠
⊺ ⎛⎜⎜⎜⎝

a b

c d

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

∆û(ω)
∆ŷ(ω)

⎞⎟⎟⎟⎠dω ≥ 0, (2.1)

∫ ∞

0

⎛⎜⎜⎜⎝
∆u(t)
∆y(t)

⎞⎟⎟⎟⎠
⊺ ⎛⎜⎜⎜⎝

a b

c d

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

∆u(t)
∆y(t)

⎞⎟⎟⎟⎠dt ≥ 0, (2.2)

where a, b, c, d ∈ R, are SRG-full.

Proof. Equation (2.1) gives

a∥∆û∥2 + (b + c) ⟨∆û∣∆ŷ⟩+ d∥∆ŷ∥2 ≥ 0.

By Parseval’s theorem, this is equivalent to

a∥∆u∥2 + (b + c) ⟨∆u∣∆y⟩+ d∥∆y∥2 ≥ 0,

which is also implied by (2.2). The result then follows from [48, Thm. 3.5].

A class of operators defined by a geometric region is SRG-full.

Proposition 2.3. Let C ⊆ C. The class of operators A defined by

A ∶= {R an operator ∣SRG (R) ⊆ C}
is SRG-full.

Proof. The definition of A can be written as

R ∈ A ⇐⇒ SRG (R) ⊆ C,

which is the definition of SRG-fullness.

This fact is particularly useful for system analysis, as it allows the SRG of an operator
to be over-approximated by a geometric region if, for example, the precise SRG is
unknown, or the SRG does not obey the properties necessary to apply a theorem. Over-
approximating an SRG simply amounts to making the analysis more conservative.
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2 .2 .2 Interconnections

Under mild conditions on the SRG, system interconnections correspond to geometric
manipulations of their SRGs. These interconnection results are proved by Ryu, Hannah,
and Yin [48] in Theorems 4.1-4.5. We recall the statements of these theorems in the
following five propositions.

Proposition 2.4. If A and B are SRG-full, then A∩B is SRG-full, and

SRG (A∩B) = SRG (A)∩ SRG (B).

Proposition 2.5. Let α ∈ R, α ≠ 0. If A is a class of operators,

SRG (αA) = SRG (Aα) = α SRG (A),

SRG (I +A) = 1+ SRG (A).

Furthermore, if A is SRG-full, then αA, Aα and I +A are SRG-full.

We define inversion in the complex plane by the Möbius transformation rejω ↦(1/r)ejω. This is “inversion in the unit circle”: points outside the unit circle map to the
inside, and vice versa. The points 0 and ∞ are exchanged under inversion.

Proposition 2.6. If A is a class of operators, then

SRG (A−1) = (SRG (A))−1.

Furthermore, if A is SRG-full, then A−1 is SRG-full.

Define the line segment between z1, z2 ∈ C as [z1, z2] ∶= {αz1 + (1 − α)z2 ∣ α ∈ [0, 1]}.
A class of operators A is said to satisfy the chord property if z ∈ SRG (A)∖ {∞} implies[z, z̄] ⊆ SRG (A).

Proposition 2.7. Let A and B be classes of operators, such that ∞ ∉ SRG (A) and ∞ ∉ SRG (B).
Then:

1. if A and B are SRG-full, then SRG (A+B) ⊇ SRG (A)+ SRG (B).

2. if either A or B satisfies the chord property, then SRG (A+B) ⊆ SRG (A)+ SRG (B).

Under additional assumptions, ∞ can be allowed - see the discussion following [48,
Thm. 4.4].

Define the right-hand arc, Arc+ (z, z̄), between z and z̄ to be the arc between z and
z̄ with centre on the origin and real part greater than or equal to Re(z). The left-hand
arc, Arc− (z, z̄), is defined the same way, but with real part less than or equal to Re(z).
Formally,

Arc+ (z, z̄) ∶= {rej(1−2ϑ)φ ∣ z = rejφ,

φ ∈ (−π, π], ϑ ∈ [0, 1], r ≥ 0},

Arc− (z, z̄) ∶= −Arc+ (−z,−z̄).
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A class of operators A is said to satisfy the right hand (resp. left hand) arc property if, for all
z ∈ SRG (A), Arc+ (z, z̄) ∈ SRG (A) (resp. Arc− (z, z̄) ∈ SRG (A)).

Proposition 2.8. Let A and B be classes of operators, such that ∞ ∉ SRG (A), A ≠ ∅, ∞ ∉
SRG (B) and B ≠ ∅. Then:

1. if A and B are SRG-full, then SRG (AB) ⊇ SRG (A)SRG (B).

2. if either A or B satisfies an arc property, then SRG (AB) ⊆ SRG (A)SRG (B).

Under additional assumptions, ∞ and ∅ can be allowed - see the discussion following
[48, Thm. 4.5].

2 .2 .3 Scaled graphs about particular solutions

Scaled relative graphs capture the behavior of an operator with respect to any possible
operating point. However, the behavior about one or several specific inputs (for example,
stable equilibria) may be of particular interest. The methods of this paper apply equally
to the analysis of properties with respect to particular inputs, via the scaled graph (SG).
For notational convenience, we only define the SG over the full space, but the SG can be
restricted to a subset of the input space in the same way as the SRG.

Definition 2.1. Let R ∶ L→ L. The scaled graph of R over L with respect to the input u⋆ is

SG u⋆(R) ∶= ⋃
u∈H

zR(u, u⋆). ⌟
Note that the SG of an LTI operator with respect to any input is equal to its SRG.

In the remainder of this section, we highlight the difference between incremental and
input-specific properties, using the example of positivity.

Definition 2.2. An operator H ∶ L2 → L2 is said to be positive about u⋆ ∈ L2 if, for all u ∈ L2,
y ∈ H(u) and y⋆ ∈ H(u⋆), ⟨u − u⋆∣y − y⋆⟩ > 0. ⌟

From this definition, it follows immediately that an operator is positive about u⋆ if
and only if its SG about u⋆ belongs to the closed right half plane. However, this does not
mean its SG about any other input necessarily lies in the right half plane - Figure 2.1
gives such an example.

Taking the union of SGs over multiple trajectories allows properties that lie between
trajectory-dependent and incremental to be verified. For example, Hines, Arcak, and
Packard [76] define equilibrium-independent passivity to be passivity with respect to every
constant input to the system (under assumptions on the system that ensure that there
is a constant output for every constant input). This can be verified by checking that the
union of SGs over constant inputs lies in the right half plane.
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Im

Re

SRG

u1

u2 SGu1
SGu2

Figure 2.1: On the left is the i − v characteristic of a resistor with a region of negative resistance.
The resistor is passive about some operating points (including u1), but not about others (such as
u2). On the right are the SGs computed at u1 and u2, as well as the SRG.

2 .3 feedback analysis with scaled relative graphs

In this section, we demonstrate the use of scaled relative graphs for the stability analysis
of feedback interconnections. We begin by using the SRG to generalize the Nyquist
criterion to a stable nonlinear operator in unity gain negative feedback, and introduce a
nonlinear stability margin. We then formulate a general stability theorem by inflating the
point −1 to the negative of the SRG of an operator in the feedback path, and show that
this theorem encompasses both the incremental small gain and incremental passivity
theorems.

The SRG analysis holds provided the feedback system is a well-defined operator,
which may not be known a priori. We deal with this issue using a homotopy argument
similar to Megretski and Rantzer [67]. We place a gain τ ∈ [0, 1] in the feedback loop, and
assume stability for τ = 0 (no feedback). We then use SRGs to show stability for every
τ ∈ (0, 1], which implies that there is no loss of stability as the feedback is introduced.
This guarantees that the feedback interconnection defines an operator on L2.

2 .3 .1 A Nyquist stability criterion for stable nonlinear operators

The Nyquist criterion characterizes the stability of a transfer function L in unity gain
negative feedback (Figure 2.2) in terms of the distance between the Nyquist diagram of
L and the point -1. This distance is called the stability margin, and is the inverse of the
H∞ norm of the sensitivity transfer function [77, p. 50]. In this section, we show that the
Nyquist criterion and stability margin can be generalized to stable nonlinear operators
by replacing the Nyquist diagram with an SRG. For such stable nonlinear operators, the
closed loop system is stable if the SRG of the loop operator leaves −1 on the left.

−

yu
L

e

Figure 2.2: Unity gain negative feedback around the relation L.
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Theorem 2.1. Let L ∶ L2 → L2 be an operator with finite incremental L2 gain. The closed loop
operator shown in Figure 2.2 maps L2 to L2 and has finite incremental L2 gain from u to y if

0 ∉ 1+ τ SRG (L) for all τ ∈ (0, 1]. (2.3)

The closed loop gain from u to e in Figure 2.2 is less than 1/sm, where sm is the shortest distance
between SRG (L) and −1.

Proof. We show that the mapping from τ to the incremental gain from u to y is continuous
if (2.3) holds. Let the distance between SRG (L−1) and −1/τ be rτ > 0. Then SRG (L−1 + τ I)
is at least a distance of rτ from the origin, so its inverse is at most rτ from the origin,
giving a bound of 1/rτ on the incremental gain from u to y, as illustrated below.

Im

Re

⊇ SRG(L−1 + τI)−1

1
rτ

Im

Rerτ

⊇ SRG(L−1 + τI)

Let ε > 0 be smaller than rτ. Then there exists a δ (positive or negative) such that, if τ

is changed to τ + δ, the distance rτ decreases by ε. Furthermore, as ε → 0, δ → 0. This is
a statement of the fact that the distance between a set and a point varies continuously
with the position of the point. The closed incremental gain bound then increases to
1/(rτ − ε). This is bounded provided ε < rτ (in which case δ small enough that −(τ + δ)
doesn’t intersect SRG (L−1)) and approaches rτ as δ → 0. This shows continuity from
τ to the closed loop incremental gain from u to y, and shows that finite incremental
gain is preserved provided SRG (L−1) never intersects −1/τ. In particular, all inputs in L2

continue to map to outputs in L2. We conclude finite incremental gain from u to y by
setting τ = 1.

To prove the second part of the theorem, note that the relation from u to e is given by

e = (I + L)−1u.

If SRG (I + L) is bounded away from 0 by a distance sm, then (I + L)−1 has an L2 gain
bound of 1/sm.

2 .3 .2 A general feedback stability theorem

The Nyquist stability criterion presented in the previous section can be generalized to
allow a second nonlinear operator in the feedback path, by inflating the point −1 into the
SRG of the feedback operator. The following theorem encompasses the classical small
gain and passivity theorems as special cases.
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u e y

H2

H1

−

Figure 2.3: Negative feedback interconnection of H1 and H2.

Let H be a class of operators. By H̄, we will denote a class of operators such thatH ⊆ H̄ and SRG (H̄) satisfies the chord property.

Theorem 2.2. Consider the feedback interconnection shown in Figure 2.3 between any pair of
operators H1 ∈ H1 and H2 ∈ H2, where H1 is a class of operators on L2 with finite incremental
gain, and H2 is a class of operators on L2. If, for all τ ∈ (0, 1],

SRG (H1)−1 ∩−τ SRG (H̄2) = ∅,

then the feedback interconnection maps L2 to L2, and its incremental L2 gain from u to y is
bounded by 1/rm, where rm is the shortest distance between SRG (H−1

1 ) and −SRG (H̄2).

The choice of which SRG to over-approximate is arbitrary. In the theorem, we have
chosen SRG (H2), but it could just as well be SRG (H−1

1 ).

Proof of Theorem 2.2. For a gain of τ in the feedback path, the class of operators from u to
y is given by

(H−1
1 + τH2)−1.

Suppose there exists a positive number rτ such that ∣z −w∣ ≥ rτ for all z ∈ SRG (H−1
1 ),

w ∈ SRG (−τH̄2).

Im

Re

rτ SRG(H−1
1 )

SRG(−τH2)

Since SRG (H−1 + τH2) ⊆ SRG (H−1)+τ SRG (H̄2), where H2 ∈ H̄2, it follows that SRG (H−1
1 + τH2)

is bounded away from zero by a distance of rτ for all H2 ∈ H̄2. In particular, this holds
for every operator H2 ∈H2.

Im

Rerτ

⊇ SRG(H−1
1 + τH2)

Im

Re

⊇ SRG(H−1
1 + τH2)

−1

1
rτ
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Applying the inverse transformation gives an incremental L2 gain bound of 1/rτ.

Ensuring this holds for all τ ∈ (0, 1] means the finite incremental gain of H1 is never
lost, so the feedback interconnection remains defined on L2. rm corresponds to r1.

One case where the criteria of Theorem 2.2 are automatically satisfied is the classical
small gain setting.

Corollary 2.1. Consider the feedback interconnection shown in Figure 2.3 between any pair of
operators H1 ∈H1 and H2 ∈H2, where H1 and H2 are the classes of operators on L2 with finite
incremental L2 gain bounds of γ and λ, respectively. If γλ < 1, then the feedback interconnection
maps L2 to L2, and its incremental L2 gain from u to y is bounded by γ/(1− γλ).

Proof. The result follows directly from Theorem 2.2. The conditions of the theorem are
shown to be satisfied by the geometry below.

Im

Re

SRG(H−1
1 )

τλ

1/γ

SRG(−H2)

The second case where the conditions of Theorem 2.2 are automatically satisfied is in
the feedback interconnection of incrementally passive systems. The classical incremental
passivity theorem [30] is proved in the following corollary.

Corollary 2.2. Consider the feedback interconnection shown in Figure 2.3 between any pair of
operators H1 ∈ H1 and H2 ∈ H2, where H1 is the class of λ-input-strict incrementally positive
operators which have an incremental L2 gain bound of µ, and H2 is the class of incrementally
positive operators. Assume λ > 0. Then the feedback interconnection maps L2 to L2, and its
incremental L2 gain from u to y is bounded by µ2/λ.

Proof. The SRGs of H1 and H2 are contained in the SRGs shown below. Note that these
both satisfy the chord property.

Im

Re

SRG(H1)

Im

Re

SRG(τH2)
µj

λ
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The SRG of the class of λ-input-strict incrementally positive operators is the circle
with centre 1/(2λ) and radius 1/(2λ) (Proposition 2.1). This circle is parameterized as{(1/λ) cos(ϑ) exp(jϑ), ∣ 0 ≤ ϑ ≤ 2π}. The semicircle with centre at the origin, positive real
part and radius µ, which is the SRG of the class of incrementally positive operators with
an incremental L2 gain bound of µ, is parameterized as {µ exp(jφ), ∣ −π/2 ≤ φ ≤ π/2}.
The result then follows from Theorem 2.2 and the geometry below.

Im

Re

SRG(H−1
1 )

j
µ

λ
µ2

1
λ

SRG(−τH2)

Corollary 2.2 characterizes the incremental gain of the closed loop. We can also
characterize the incremental positivity of the closed loop, with another form of the
classical passivity theorem. The following theorem generalizes [78, Prop. 8].

Theorem 2.3. Consider the feedback interconnection shown in Figure 2.3 between any pair of
operators H1 ∈ H1 and H2 ∈ H2, where H1 is the class of operators which are γ-output-strict
incrementally positive, and H2 is the class of operators which are λ-input-strict incrementally
positive (that is, have a shortage of input-strict incremental positive). If

λ + γ ≥ 0,

then the operator from u to y is (γ + λ)-output-strict incrementally positive.

Proof. Assume, without loss of generality, that λ < 0. We first prove the case where
λ + γ > 0. This follows from the geometry shown below.
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2 .4 the scaled relative graph of an lti transfer function

Im

Re

SRG(H−1
1 )

Im

Re

SRG(H2)

+

Im

Re

SRG(H−1
1 +H2)

γ λ

γ + λ

Im

Re

SRG(H−1
1 +H2)

−1

1/(γ + λ)

invert

The case where λ + γ = 0 then follows by taking the limit λ → −γ, and allowing the
radius of the circle in the final panel above to tend to ∞.

The definition of a stability margin for nonlinear operators leads us naturally to pose
an “H∞ design problem”, in the same vein as Zames [56], to do with the maximization of
the stability margin over a set of admissible controllers. A generalization of the H∞ design
question to nonlinear operators is as follows: given a plant G (modelled by an operator
on L2) in feedback with an uncertain block ∆ known to be bounded by a particular SRG,
design a controller C to maximize the distance between SRG (CG)−1 and −SRG (∆).

2 .4 the scaled relative graph of an lti transfer function

In this section, we show that the SRG of a stable LTI transfer function is the convex
hull of its Nyquist diagram, under the Beltrami-Klein mapping. We first presented
this result in [78], and it was noted by Pates [79] that this is a special case of a more
general phenomenon involving the numerical range of a linear operator. This allows
computational methods for the numerical range to be applied directly to computation of
the boundary of an SRG.

We begin by introducing some preliminaries from hyperbolic geometry in Sec-
tion 2.4.1, before giving the main result in Section 2.4.2.

2 .4 .1 Hyperbolic geometry

We recall some necessary details from hyperbolic geometry. The notation is consistent
with Huang, Ryu, and Yin [80].
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Definition 2.3. Let z1, z2 ∈ CIm≥0 ∶= {z ∈ C ∣ Im(z) ≥ 0}, the upper half complex plane. We
define the following sets:

1. Circ (z1, z2) is the circle through z1 and z2 with centre on the real axis. If Re(z1) =
Re(z2), this is defined as the infinite line passing through z1 and z2.

2. Arcmin (z1, z2) is the arc of Circ (z1, z2) in CIm≥0. If Re(z1) = Re(z2), then Arcmin (z1, z2)
is [z1, z2].

3. Given z1, . . . , zm ∈ CIm≥0, the arc-edge polygon is defined by: Poly (z1) ∶= {z1} and
Poly (z1, . . . , zm) is the smallest simply connected set containing S, where

S = ⋃
i,j=1...m

Arcmin (zi, zj).

⌟
Note that, as Poly (z1, . . . , zm−1) ⊆ Poly (z1, . . . , zm−1, zm) ⊆ CIm≥0, the set Poly (Z),

where Z is a countably infinite sequence of points in CIm≥0, is well defined as the limit
limm→∞ Poly (Zm), where Zm is the length m truncation of Z (see [81, p. 111]).

Definition 2.3 forms the basis of the Poincaré half plane model of hyperbolic geometry.
Under the Beltrami-Klein mapping, f ○ g, where

f (z) = 2z
1+ ∣z∣2 ,

g(z) = z − i
z + i

,

CIm≥0 is mapped onto the unit disc, and Arcmin (z1, z2) is mapped to a straight line
segment. We make the following definitions of convexity and the convex hull in the
Poincaré half plane model.

Definition 2.4. A set S ⊆ CIm≥0 is called hyperbolic-convex or h-convex if

z1, z2 ∈ S Ô⇒ Arcmin (z1, z2) ∈ S.

Given a set of points P ∈ CIm≥0, the h-convex hull of P is the smallest h-convex set
containing P. ⌟

Note that h-convexity is equivalent to Euclidean convexity under the Beltrami-Klein
mapping. Arcmin (z1, z2) is the minimal geodesic between z1 and z2 under the Poincaré
metric, so h-convexity may be thought of as geodesic convexity with respect to this metric.
We recall the following useful lemma of Huang, Ryu, and Yin [82].

Lemma 2.1. (Lemma 2.1 [82]): Given a sequence of points Z ∈ CIm≥0, Poly (Z) is h-convex.

In our terminology, given a sequence of points Z ∈ CIm≥0, Poly (Z) is the h-convex
hull of Z.
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2 .4 .2 SRGs of LTI transfer functions

Let g ∶ L2 → L2 be linear and time invariant, and denote its transfer function by G(s). g
maps a complex sinusoid u(t) = aejωt to the complex sinusoid y(t) = a∣G(jω)∣ej∠G(jω)+jωt.
These signals do not belong to L2, but are treated as limits of sequences in L2. Precisely,
we define the points on the SRG corresponding to sinusoidal signals by taking the gain
and phase to be

lim
T→∞

∥PTy∥∥PTu∥
lim

T→∞
∠(PTu, PTy).

Both these limits exist when u and y are sinusoidal. The Nyquist diagram Nyquist (G) of
an operator g ∶ L2(C)→ L2(C) is the locus of points {G(jω) ∣ω ∈ R}.

Theorem 2.4. Let g ∶ L2(C)→ L2(C) be linear and time invariant, with transfer function G(s).
Then SRG (g)∩CIm≥0 is the h-convex hull of Nyquist (G)∩CIm≥0.

The proof of Theorem 2.4 is closely related to the proof of Huang, Ryu, and Yin [82,
Thm. 3.1], and is deferred to Section 2.11. A consequence of Theorem 2.4 is that the
SRG of an LTI operator is bounded by its Nyquist diagram. For example, the SRG of the
transfer function 1/(s3 + 5s2 + 2s + 1) is illustrated in 2.4. Further examples are given in
[78].

Given Theorem 2.4, we recover two familiar properties of the Nyquist diagram as
special cases of Proposition 2.1, namely that passivity is equivalent to the Nyquist diagram
lying in the right half plane, and the H∞ gain is the maximum magnitude of the Nyquist
diagram.

Im

Re

j

−j

1−1

Figure 2.4: SRG of the transfer function 1/(s3 +5s2 +2s+1). The black curve is its Nyquist diagram,
the grey region is the SRG.

2 .5 scaled relative graphs of static nonlinearities

LTI systems map complex sinusoids to complex sinusoids, and the behavior of an LTI
system on L2 can be fully characterized by its behavior on complex sinusoids. Similarly,
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static nonlinearities map square waves to square waves. Here, we show that the behavior
of these functions on L2, insofar as it is captured by the scaled relative graph, is fully
characterized by their behavior on a two-dimensional subspace of L2 spanned by two
Haar wavelets (truncations of a square wave to a single period). In particular, we show
that the SRGs of the saturation and ReLU are identical, and closely related to the SRG of
a first order lag. The use of square waves allows us to test the effect of different input
amplitudes on the output, which is analogous to the use of sinusoids to test the effect of
different input frequencies on the output of an LTI system.

Proposition 2.9. Suppose S ∶ L2 → L2 is the operator given by a SISO static nonlinearity
s ∶ R→ R, such that for all u1, u2 ∈ R, yi ∈ s(ui),

µ(u1 − u2)2 ≤ (y1 − y2)(u1 − u2) ≤ λ(u1 − u2)2. (2.4)

Then the SRG of S is contained within the disc centred at (λ + µ)/2 with radius (λ − µ)/2.

Proof. Define an operator S̄ by u ↦ ȳ ∶= S(u)− µu. Let ∆u(t) = u1(t)− u2(t) and ∆ȳ(t) =
ȳ1(t)− ȳ2(t). We drop the t dependence in the remainder of this proof. By assumption
on s, for all ∆u and corresponding incremental output ∆ȳ, we have

0 ≤ ∆u(∆y − µ∆u) ≤ λ∆u2, (2.5)

0 ≤ ∆u∆ȳ ≤ λ∆u2. (2.6)

It then follows that ∆u∆ȳ ≥ 0 and ∆u∆ȳ− (λ− µ)∆u2 ≤ 0, from which the following series
of equivalent statements follow:

∆u∆ȳ(∆u∆ȳ − (λ − µ)∆u2) ≤ 0

∆ȳ(∆ȳ − (λ − µ)∆u∆ȳ) ≤ 0

∆u∆ȳ ≥ 1
λ − µ

∆ȳ2.

This shows that S̄ is output-strict incrementally positive with constant 1/(λ − µ), so its
SRG is the disc with centre (λ − µ)/2 and radius (λ − µ)/2. The result then follows by
noting that S is the parallel interconnection of S̄ with µI, so its SRG is the SRG of S̄
shifted to the right by µ.

The same bounding region can be obtained for the SG with respect to an input u⋆,
by restricting the second input in the proof of Proposition 2.9 to be u⋆. This is stated
formally below.

Proposition 2.10. Suppose S ∶ L2 → L2 is the operator given by a SISO static nonlinearity
s ∶ R→ R, such that, for all u1 ∈ R, y1 ∈ s(u1), y⋆ ∈ s(u⋆),

µ(u1 − u⋆)2 ≤ (y1 − y⋆)(u1 − u⋆) ≤ λ(u1 − u⋆)2. (2.7)

Then the SG of S with respect to u⋆ is contained within the disc centred at (λ + µ)/2 with radius(λ − µ)/2.
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2 .5 scaled relative graphs of static nonlinearities

The discs obtained in the previous two propositions are closely related to the discs of
the classical incremental circle criterion [69] - indeed, taking the negative and inverting
transforms one to the other.

We now show that, for a large class of systems, the disc bound on the SRG cannot
be improved. If the characteristic curve of s contains a “maximal elbow”, that is, a
point where the slope switches from maximum to minimum, then small signals centred
around the elbow can be used to generate the perimeter of the bound of Proposition 2.9.
Furthermore, if the region of minimum slope extends to infinity, then large signals can
be used to generate the interior of the bound of Proposition 2.9. This is formalized in the
following two propositions. We treat only an elbow from slope 1 to slope 0, as a loop
transformation can be used to convert any other elbow to this form.

Proposition 2.11. Suppose S ∶ L2 → L2 is a memoryless nonlinearity defined by a map s ∶ R→ R

which satisfies (2.4) with µ = 0 and λ = 1. Furthermore, suppose there are real numbers u⋆ and
δ > 0, such that,

s(u⋆ + εu)− s(u⋆) = 0 for all εu ∈ [0, δ] (2.8)

s(u⋆)− s(u⋆ − ε l) = ε l for all ε l ∈ [0, δ]. (2.9)

Then the SRG of S contains the circle centred at 1/2 with radius 1/2.

Proof. We consider two input signals, supported on [0, 1]:
u1(t) = u⋆, u2(t) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩

u⋆ + ε 0 ≤ t < τ

u⋆ − ε τ ≤ t ≤ 1,

where τ ∈ [0, 1]. The corresponding output signals are given by

y1(t) = s(u⋆), y2(t) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
s(u⋆ + ε) 0 ≤ t < τ

s(u⋆ − ε) τ ≤ t ≤ 1,

giving the incremental signals

∆u(t) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
−ε 0 ≤ t < τ

ε τ ≤ t ≤ 1,
∆y(t) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 0 ≤ t < τ

ε τ ≤ t ≤ 1.

∆y can be written as k(t)∆u(t), where

k(t) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 0 ≤ t < τ

1 τ ≤ t ≤ 1.

Calculating gain then gives

∥∆y∥ = (∫ 1

0
k2(t)∆u2(t)dt) 1

2 = (∫ 1

τ
∆u2(t)dt) 1

2 = γ∥∆u∥,
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for some γ which varies between 0 and 1 as τ varies between 1 and 0. It follows that

∥∆y∥∥∆u∥ = γ.

Calculating the phase gives

acos
⟨∆u∣∆y⟩∥∆u∥∥∆y∥ = acos ∫ 1

0 k(t)∆u2(t)dt

γ∥∆u∥2

= acos ∫ 1
τ ∆u2(t)dt

γ∥∆u∥2

= acos(γ).

Since γ ∈ [0, 1], we can define ϑ by cos(ϑ) = γ. We then have the locus of points on the
SRG given by

cos(ϑ) exp(±jϑ), 0 ≤ ϑ ≤ π/2,

which is the circle with centre 1/2 and radius 1/2.

Proposition 2.12. Suppose S ∶ L2 → L2 is a memoryless nonlinearity defined by a map s ∶ R→ R

which satisfies (2.4) with µ = 0 and λ = 1, and which satisfies s(0) = 0. Furthermore, suppose
there is a real number u⋆ such that

s(u⋆ + M)− s(u⋆) = 0 for all M ≥ 0 (2.10)

s(u⋆) > 0. (2.11)

Then the SRG of S is the disc centred at s(u⋆)/2u⋆ with radius s(u⋆)/2u⋆.

Proof. We consider two input signals, supported on [0, 1]:
u1(t) = M, u2(t) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩

M + u⋆ 0 ≤ t < τ

0 τ ≤ t ≤ 1,

where τ ∈ [0, 1], and M ≥ u⋆. The corresponding output signals are

y1(t) = s(M) = s(u⋆)
y2(t) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩

s(M + u⋆) 0 ≤ t < τ

0 τ ≤ t ≤ 1,

giving the incremental signals

∆u(t) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
−u⋆ 0 ≤ t < τ

M τ ≤ t ≤ 1,
∆y(t) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 0 ≤ t < τ

s(u⋆) τ ≤ t ≤ 1.

Define β(M) ∶= s(u⋆)/M. Then ∆y can be written as k(t)∆u(t), where

k(t) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 0 ≤ t < τ

β(M) τ ≤ t ≤ 1.
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2 .5 scaled relative graphs of static nonlinearities

Calculating gain then gives

∥∆y∥ = (∫ 1

0
k2(t)∆u2(t)dt) 1

2

= β(M) (∫ 1

τ
∆u2(t)dt) 1

2

= β(M)γ∥∆u∥,

for some γ which varies between 0 and 1 as τ varies between 1 and 0. It follows that

∥∆y∥∥∆u∥ = β(M)γ.

Calculating the phase gives

⟨∆u∣∆y⟩∥∆u∥∥∆y∥ = ∫ 1
0 k(t)∆u2(t)dt

β(M)γ∥∆u∥2

= β(M) ∫ 1
τ ∆u2(t)dt

β(M)γ∥∆u∥2= γ.

Since γ ∈ [0, 1], we can define ϑ by cos(ϑ) = γ. We then have the locus of points on the
SRG given by

β(M) cos(ϑ) exp(±jϑ), 0 ≤ ϑ ≤ π/2.

This is the circle with centre β(M)/2 and radius β(M)/2. Varying M between u⋆ and ∞
varies β(M) between s(u⋆)/u⋆ and 0, so we fill the disc with centre s(u⋆)/2u⋆ and radius
s(u⋆)/2u⋆.

Proposition 2.12 allows us to gives an exact characterization of the SRGs of a range of
static nonlinearities, including the unit saturation, the ReLU, and the limiting cases of
the relay and ideal diode.

The proof of Proposition 2.11 uses probing signals which have an arbitrarily small
magnitude variation about a “worst case” input value. This shows the local or worst case
nature of the SRG - the boundary of the SRG is generated by these probing signals.

Remark 2.1. We conclude this section by remarking that the characterization of output-
strict incrementally positive static nonlinearities allows the SRGs of a large class of dynamic
output-strict incrementally positive nonlinear systems to be characterized. Output-strict
incremental positivity is preserved under negative feedback with an incrementally posi-
tive system, as shown in Theorem 2.3. This means that any scalar system of the form

ẏ = a(y)+ u,

where a obeys an incremental sector bound with positive constants, is output-strict
incrementally positive. ⌟
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2 .6 example 1 : feedback with saturation and delay

In this section, we use SRGs to analyze feedback systems with delays, dynamic com-
ponents and static nonlinearities. We will derive incremental stability bounds which
depend both on the delay time and the dynamic time constant, similar to the state of
the art non-incremental bounds obtained using the roll-off IQC [83]. These bounds are
obtained by approximating the SRG of the delay and the dynamics, treated as a single
component. In the simple example of this section, where the dynamic component is LTI,
this approach reduces to the incremental circle criterion. However, the approach allows
for arbitrary dynamic components, as shown in Section 2.8. One of the advantages of our
approach is the derivation of stability margins and incremental L2 gain bounds for the
closed loop.

We begin with the system of Figure 2.5, showing a time delay and an LTI transfer
function in feedback with a 1/β-output-strict incrementally passive component ∆.

−
yu

e−sT

∆

P (s)

Figure 2.5: Simple system with delay in the feedback loop.

We take P(s) = s2/(s3 + 2s2 + 2s + 1), also considered in [67, §3]. The Nyquist diagram
of P(s) cascaded with the delay, and a bounding approximation of the SRG, are shown
in the left hand side of Figure 2.6. As the delay is increased, the Nyquist diagram, and
hence the SRG, extend further into the left half plane.
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SRG(−H2)

Figure 2.6: Left: Nyquist diagram of e−sTs2/(s3 + 2s2 + 2s + 1) (black) and a bounding approxima-
tion of its SRG. Right: feedback with 1/β-output-strict incrementally passive system.

Applying Theorem 2.2 with H2 = e−sTP(s) and H1 = ∆, we obtain the right hand
side of Figure 2.6. Stability is verified if the delay SRG always has real part greater
than 1/β, which ensures that rm > 0. Solving numerically for minω Re(P(jω)ejωT) gives
a stability bound on β, as a function of T, shown in Figure 2.7, which also shows the
non-incremental stability bound obtained by Megretski and Rantzer [67] using IQC
analysis, for the particular case where ∆ is a saturation. For short delay times, the non-
incremental bound is shown to tend to infinity, using the Zames-Falb-O’Shea multiplier.
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2 .6 example 1 : feedback with saturation and delay

The incremental bound obtained using SRG analysis has a non-smooth point where the
leftmost segment of the Nyquist diagram switches, and is bounded for all delay times.

The SRG analysis gives a bound which guarantees incremental L2 gain, a stronger
property than the L2 gain from IQC analysis. Finite incremental L2 gain in particular
implies input-output continuity. As noted by Kulkarni and Safonov [72], stability results
using Zames-Falb-O’Shea and Popov multipliers do not guarantee continuity, as these
multipliers do not preserve the incremental passivity of static nonlinear elements. This
issue was also alluded to in the discussion of [84, Thm. 1], in the context of incremental
IQC analysis. The situation for proving finite incremental L2 gain with these multipliers
is similar; the loss of incremental passivity of the static nonlinearity means the incre-
mental passivity theorem cannot be applied, so another method of proving stability is
needed. One such method would be to apply Theorem 2.2 to the transformed loop,
and indeed there are multipliers which destroy incremental passivity but which still
verify an incremental L2 gain bound. For this particular example, the transfer function(s + 1)/(s − 1) could be used as a multiplier, although it gives a more conservative bound
than Figure 2.7. Global [85], universal [86] and equilibrium-independent [76] L2 gain are
weaker than incremental L2 gain but stronger than L2 gain, and afford differing levels of
tractability.

In addition to proving incremental L2 stability, we can give an incremental L2 gain
bound. For a fixed β, 1/rm is an incremental L2 gain bound from u to y, which depends
on the time delay T. For β = 1, this bound is plotted in Figure 2.7.

Figure 2.7: Left: The grey line is an upper bound on β which guarantees that the system of
Figure 2.5 has bounded incremental L2 gain with a delay of T. The crosses give a bound on β
which guarantees (non-incremental) L2 stability, obtained using IQC analysis [67, Fig. 6]. Right:
the incremental L2 gain bound from u to y for β = 1.

The motivation behind the traditional structure of the Lur’e system is to put all of the
“troublesome” elements in the nonlinear component, and all of the dynamics in the LTI
component. The availability of explicit SRGs for elements which are usually troublesome,
such as saturations and delays, means that this structure is not necessarily ideal for SRG
analysis, and the feedback system may be better modelled in a different way. This is
illustrated in the following two examples.
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2 .7 example 2 : cyclic feedback systems

We now turn to the analysis of cyclic feedback systems. Such systems are often found in
biological models [87], among many other application domains (see, for example, the
discussion of Mallet-Paret and Sell [88]). We derive the SRG of a cascade of output-strict
incrementally positive systems, and a gain margin condition for stability gives rise to the
incremental secant condition [73], giving a geometric interpretation to the original result.
The result we give here is tight in the sense that stronger conditions than output strict
incremental positivity of the plants are required for any stronger bound.

We consider the cascade of n output-strict incrementally passive systems, with pa-
rameters 1/γi, i = 1, . . . , n, in unity gain negative feedback, shown in Figure 2.8. By
Theorem 2.1, the system is stable if the SRG of the cascade doesn’t intersect the point−1/τ for τ ∈ (0, 1].

−

u y

Figure 2.8: Cascade of subsystems in unity gain negative feedback.

The SRG of the ith system is the disc with centre γi/2 and radius γi/2. The perimeter
of this disc has the parameterization

zi(ϑ) = γi cos(ϑ)e−jϑ −π/2 ≤ ϑ < π/2 (2.12)

As this disc satisfies the right hand arc property, the SRG of the full cascade is the product
of n discs. We claim that the perimeter of this SRG has the parameterization

z(φ) = γ1γ2 . . . γn (cos
φ

n
)n

e−jφ, −π ≤ φ < π. (2.13)

For instance, take any z1, z2, . . . , zn. Using (2.12) and Proposition 2.8 gives the point

w = γ1 . . . γn cos(ϑ1) . . . cos(ϑn)e−j(ϑ1+...+ϑn), (2.14)

for −π < ϑ1, ϑ2, . . . , ϑn < π. Letting ϑ1 = ϑ2 = . . . = ϑ, and setting φ = nϑ gives the
parameterization (2.13) (noting that −π ≤ φ < π as (2.13) is 2π-periodic). This shows that
all the points z(φ) lie within the SRG. To show that they are indeed on the perimeter of
the SRG, we take any point w and show that its magnitude is smaller than the point z(φ)
with the same argument. This follows from (2.14) if we can show that

cos(ϑ1) cos(ϑ2) . . . cos(ϑn) ≤ cos(ϑ1 + ϑ2 + . . . + ϑn).

This is proved in [73]: f (φ) = − ln cos(φ) is convex on (−π/2, π/2). Applying Jensen’s
inequality gives f (∑i ϑi) ≤ ∑i f (ϑi), and the required inequality follows by taking the
exponential. Note that the inequality still holds in the limit as one angle ϑi → ±π/2. This
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2 .7 example 2 : cyclic feedback systems

result is closely related to [82, Thm. 1], which characterizes the SRG of the composition
of two averaged operators.

The SRG of an example cascade with every γi = 1 is shown in Figure 2.9. The intercept
with the negative real axis is at the point z(π) = −γ1γ2 . . . γn (cos π

n )n
. A direct application

of Theorem 2.1 thus gives the following incremental secant condition.

Theorem 2.5. The system of Figure 2.8, where the n interconnected systems are each output-strict
incrementally passive with parameters γi, i = 1, . . . , n, has a finite incremental L2 gain if

γ1γ2 . . . γn < (sec
π

n
)n

.

The SRG of a cascade allows several other useful values to be computed. An in-
cremental L2 gain bound can be found by minimizing the distance between −1 and
1/(γ1 . . . γn cos(ϑ1) . . . cos(ϑn)e−j(ϑ1+...+ϑn)). This distance is shown for n = 4 in Figure 2.10.
Furthermore, we can calculate the shortage of input-strict incremental positivity of the
cascade by finding the distance the SRG extends into the left half plane. For example,
for a cascade of two systems each with γi = 1, the shortage of input-strict incremental
positivity is 1/8. Stan, Hamadeh, Sepulchre, et al. [89] show that if the coupling strength in
a network of oscillators modelled as cascade feedback systems is large enough compared
to the shortage of each oscillator, the network will synchronize.

1
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−Πγi

(
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n

)n

n = 1

n = 2
n = 3

n = 4

n = 5

Figure 2.9: SRGs of the cascade of Figure 2.8, where each subsystem is 1-output-strict incremen-
tally positive, for 1 to 5 subsystems.
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SRG(L−1)

Figure 2.10: Inverse SRG of a cascade of four output-strict incrementally positive systems. The
stability margin is rm. The intercept with the negative real axis is at −1/(Πiγi(cos(π/n))n).

If an uncertain gain k∆ is placed in feedback with the cascade, as shown in Figure 2.11,
SRG analysis allows us to give a bound on k∆ which guarantees incremental stability. The
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inverse SRG of the cascade (Figure 2.10) is shifted to the right by k∆; if it does not intersect−1, the closed loop has finite incremental gain. This allows us to conclude stability if

k∆ < −1+ (γ1γ2 . . . γn (cos
π

n
)n)−1

.

−

u y
k∆

Figure 2.11: Cascade of subsystems with an uncertain feedback gain k∆, in unity gain negative
feedback.

2 .8 example 3 : combining cascades and delays

In this final example, we combine a delay with a cascade of two output-strict incrementally
positive systems, and revisit the internet congestion control example of Summers, Arcak,
and Packard [83]. In that paper, equilibrium-independent IQCs are verified numerically
in order to compute a bound on the variables δ, β and Nu in the left of Figure 2.12, which
guarantees (non-incremental) input/output stability of the system. Here, we derive a
bound which guarantees finite incremental gain of the system.

−

u y
e−sTe−sT 1

s

β

φ(·)

Nu∆

−

1
s+β

φ(·)

e−sT

esT

−

L

Figure 2.12: Left: internet congestion control example of [83]. β > 0, φ(w) is γ-output-strict
incrementally positive, Nu ∈ N, ∆ is δ-output-strict incrementally positive. 0 < 1/γ < β. Right:
equivalent representation of the forward path, L.

In order to combine the delay and first order lag, we rearrange the forward path as
shown in the right of Figure 2.12. This gives a delay-dependent bounding SRG, shown in
Figure 2.13, for the forward path.

To apply Theorem 2.2, we solve for the largest radius r as shown in the right hand
side of Figure 2.13, before the two SRGs overlap. This is equal to the reciprocal of the
distance the SRG of L extends into the left half plane, which is solved numerically. This
gives the bound on Nu/δ, plotted in Figure 2.14, that guarantees an incremental L2 gain
bound for the closed loop.
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Figure 2.13: Left: bounding SRG of L, for β = 1, T = 1, γ = 2. Right: inverse of L and negative of
an r-output-strict incrementally positive block ∆. Only the upper half is shown.

Figure 2.14: Upper bound on Nu/δ for the system of Figure 2.12 to have finite incremental L2
gain, derived by applying Theorem 2.2. Plotted for β = 1, γ = 0.5.

2 .9 a rolled-off passivity theorem

The conditions of the small gain and passivity theorems are restrictive, and, as illustrated
in the previous three examples, there are many feedback systems which are stable, but do
not meet the assumptions of either theorem. A common issue in practice is that a system
would satisfy the conditions of the passivity theorem, were it not for high frequency
dynamics destroying passivity. The input/output gain, however, is small at these high
frequencies. This issue played an important part in the development of adaptive control -
see [90] and references therein. The prevalence of such systems has motivated several
specialized stability results. The LTI mixed small gain/passivity condition of Griggs et
al.[91] divides the frequency spectrum into frequencies at which two systems are passive,
frequencies at which they have small gain, and frequencies at which they satisfy both
criteria. This is generalized directly to nonlinear systems by Forbes and Damaren [92],
using the terminology hybrid small gain/passivity, and is connected to the Generalized
KYP lemma of Iwasaki and Hara [93] in reference [94]. The nonlinear generalization of
Griggs et al.[95] uses a pair of linear operators to define a “blended” supply rate which
represents mixed small gain and passivity. The roll-off IQC was introduced by Summers,
Arcak and Packard [83] to capture the roll-off of input/output gain at high frequency.

In this section, we introduce an incremental rolled-off passivity theorem, which applies
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to incrementally stable systems which only violate incremental passivity when their
incremental input/output gain is small. Rather than requiring gain to roll-off over any
particular frequency range, we simply require the gain to roll off when the phase shift,
measured as an angle in signal space, exceeds π/2. The idea takes inspiration from the
blended supply rate of Griggs et al.[95], however, rather than using a smoothly blended
supply, we simply split the space of input signals into those pairs of signals where
the two systems have incremental small gain, are incrementally passive, or both. We
call this property incremental (µ, γ)-dissipativity. Unlike the results of references [92],
[95], [96], we do not require systems to be incrementally (µ, γ)-dissipative for the same
partition of signals. This maintains the “worst case” nature of the small gain and passivity
theorems, but simplifies the verification of the property. The resulting condition for finite
incremental gain bears a strong resemblance to the classical incremental small gain
condition.

Incremental (µ, γ)-dissipativity is defined as follows.

Definition 2.5. Let H ∶ L2 → L2 and µ, γ, ε ≥ 0. We say that H is ε-strongly incrementally(µ, γ)-dissipative if, for all u1, u2 ∈ L2 and all y1 ∈ H(u1), y2 ∈ H(u2), either:

∥y1 − y2∥ ≤ µ∥u1 − u2∥, (2.15)

or both:

⟨u1 − u2∣y1 − y2⟩ ≥ ε∥u1 − u2∥2 (2.16a)

and ∥y1 − y2∥ ≤ γ∥u1 − u2∥, (2.16b)

or all of (2.15), (2.16a) and (2.16b) hold. If ε = 0, we simply say that H is incrementally(µ, γ)-dissipative. ⌟
Incremental (µ, γ)-dissipativity is defined independently of the frequency spectra of

signals, however it captures those systems which are incrementally passive except for
high frequency dynamics, when the system has low gain. Incremental (µ, γ)-dissipativity
is easily verified for systems with low-pass dynamics whose passivity is destroyed by
effects such as input saturation and small delays, as explored further in Example 2.1.

If γ < µ, incremental (µ, γ)-dissipativity reduces to an incremental gain bound of
µ. If µ = 0, the property reduces to finite incremental gain and input strict incremental
passivity.

Incremental (µ, γ)-dissipativity has an appealing graphical interpretation, developed
in the following lemma. This lemma is especially useful as it allows the property of
incremental (µ, γ)-dissipativity to be easily determined from the SRG of a system.

Lemma 2.2. Let µ, γ > 0, ε ≥ 0, and let S ε
µ,γ be the class of operators which are ε-strongly

incrementally (µ, γ)-dissipative. Then

SRG (S ε
µ,γ) = D1 ∪D2,
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2 .9 a rolled-off passivity theorem

where

D1 ∶= {z ∣ z ∈ C, ∣z∣ ≤ µ},

D2 ∶= {z ∣ z ∈ C, ∣z∣ ≤ γ, Re{z} ≥ ε},

as shown in Figure 2.15. Furthermore, S ε
µ,γ is SRG-full.

Im

Re
γ−µ

D1

D2ε

Figure 2.15: Graphical interpretation of ε-strong incremental (µ, γ)-dissipativity. Lemma 2.2
shows that the SRG of the class of ε-strongly incrementally (µ, γ)-dissipative systems is D1 ∪D2.

Proof. We begin by showing SRG (S ε
µ,γ) ⊆ D1 ∪D2. Let H ∈ S ε

µ,γ and u1, u2 ∈ L2 be arbitrary
inputs. Then, by assumption, for all y1 ∈ H(u1), y2 ∈ H(u2), either (2.15) is true, or (2.16a)
and (2.16b) are true, or all three inequalities are true. Suppose first that (2.15) is true.
Then ∥y1 − y2∥/∥u1 − u2∥ ≤ µ, so zH(u1, u2) ⊆ {z ∣ z ∈ C, ∣z∣ ≤ µ} = D1.

We now treat the second case. Suppose that (2.16a) and (2.16b) are true. Note that,
for z ∈ zH(u1, u2) corresponding to outputs y1, y2,

Re(z) = ⟨u1 − u2∣y1 − y2⟩∥u1 − u2∥2 . (2.17)

It then follows from Equation (2.16a) that zH(u1, u2) ⊆ {z ∣ z ∈ C, Re(z) ≥ ε}. Equa-
tion (2.16b) gives zH(u1, u2) ⊆ {z ∣ z ∈ C, ∣z∣ ≤ µ}, so zH(u1, u2) ⊆ {z ∣ z ∈ C, Re(z) ≥
ε} ∩ {z ∣ z ∈ C, ∣z∣ ≤ µ} = D2. Combining the two cases, we have zH(u1, u2) ⊆ D1 ∪D2.
Since u1 and u2 were arbitrary, it follows that SRG (S ε

µ,γ) ⊆ D1 ∪D2.

To show the opposite inclusion, let z ∈ D1 ∪D2 be arbitrary, and consider Az ∶
L2(C) → L2(C) defined by Az(w) = ∣z∣ej arg(z)w. A straightforward calculation shows
that SRG (Az) = {z, z̄}. If we can show that Az ∈ S ε

µ,γ, it follows that SRG (S ε
µ,γ) ⊇ D1 ∪D2.

The fact that Az ∈ S ε
µ,γ is shown using the following argument, which also proves SRG-

fullness of S ε
µ,γ.

Take an arbitrary operator H which satisfies SRG (H) ⊆ D1 ∪D2. Take z ∈ SRG (H),
and let u1, u2, y1, y2 be any inputs and outputs that correspond to the point z. If z ∈ D1,
then u1, u2, y1, y2 obey (2.15). If z ∈ D2, then u1, u2, y1, y2 obey (2.16a) and (2.16b). It follows
that H ∈ S ε

µ,γ.

A direct application of Theorem 2.1 and Lemma 2.2 gives the following “rolled-off
passivity theorem”.
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Theorem 2.6. Let H1, H2 ∶ L2 → L2. Suppose there exist µ1, µ2, γ1, γ2 ≥ 0 and ε > 0 such that
µ1 < γ1, µ2 < γ2, H1 is incrementally (µ1, γ1)-dissipative and H2 is ε-strongly incrementally(µ2, γ2)-dissipative. Then the feedback interconnection of H1 and H2 shown in Figure 2.3 maps
L2 to L2 and has finite incremental gain from u to y if

µ1γ2 < 1, µ2γ1 < 1.

Note that setting µ1 = µ2 = 0 and letting γ1, γ2 →∞ recovers the incremental passivity
theorem. If the conditions γ1 < µ1, γ2 < µ2 hold, the requirement for stability is the
incremental small gain theorem: µ1µ2 < 1 [50].

We conclude this section with an example of the application of Theorem 2.6.

Example 2.1. Consider the feedback system shown in Figure 2.16. The forward path H1

consists of a first order lag in feedback with a relay, with a unit saturation on the input.
The feedback path H2 consists of a delayed first order lag with a unit saturation on the
input.

−

u y
1.2

(s+1)

e−s

s+1

−

H1

H2

Figure 2.16: Example feedback system.

The unit saturation is defined as

y = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
u ∣u∣ < 1

u/∣u∣ otherwise.

The relay is defined as

y = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
u/∣u∣ u ≠ 0

0 u = 0.

We verify incremental (µ, γ)-dissipativity for H1 and H2 by plotting bounding ap-
proximations of their SRGs. The bounding SRG for H1 is obtained by taking the SRGs
of the saturation, relay and unit lag, given by Theorem 2.4 and Proposition 2.12, and
composing them according to the interconnection rules of Propositions 2.5 to 2.8. The
approximation for H2 is similarly derived using Theorem 2.4 and Proposition 2.12 and
applying Proposition 2.8. The SRGs for H1 and H2 are shown in Figure 2.17.
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Im
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0.6j

1.2

0.792j
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⊇ SRG(H1) ⊇ SRG(H2)

Figure 2.17: Over-approximations of the SRGs of H1 and H2 in Figure 2.16.

Note that neither H1 nor H2 is incrementally positive (their SRGs are not contained in
the right half plane), nor do they obey the incremental small gain condition (the product
of the maximum moduli of their SRGs exceeds 1).

It can be read from the SRGs that H1 is incrementally (µ1, γ1)-dissipative, with
µ1 = 0.6 and γ1 = 1.2. The circles centred at the origin with radii 0.6 and 1.2 are shown in
Figure 2.17; the SRG of H1 lies within the union of these circles.

Similarly, it can be verified from the SRG and the circles plotted in Figure 2.17
that, for all µ2 > 0.792, there exists an ε > 0 such that H2 is ε-strongly incrementally(µ2, γ2)-dissipative, with γ2 = 1. Therefore, the conditions of Theorem 2.6 are met, and
we conclude finite incremental L2 gain of the feedback system. ⌟
2 .10 conclusions

We have introduced the tool of Scaled Relative Graphs to system analysis, and used it to
analyze the incremental stability of operators in feedback. Characterizing stability by the
separation of two SRGs unifies existing theorems such as the incremental small gain and
passivity theorems, the incremental circle criterion and the incremental secant condition,
using an intuitive graphical language. This graphical language is particularly suited
to the calculation and visualization of stability margins, and furthermore allows the
input-output gain of a feedback system to be estimated. It also allows for a formulation
of H∞ control design for nonlinear operators. There are many questions for future work;
here we will list only two.

A first question is concerned with approximating the SRGs of nonlinear operators
defined by state space models, or directly from input/output data.

A second question is concerned with the extension of the Nyquist theorem to the
general case of unstable open loop plants.

2 .11 proof of theorem 2 .4

The proof has three components. We begin by showing that, for an LTI transfer function
G(s), the Nyquist diagram at the frequencies n2π/T is a subset of the SRG of G(s). We
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then show, for operators on the space L2,T of T−periodic, finite energy signals, the SRG is
in the convex hull of the points generated by applying the operator to the basis of L2,T

given by {ejtn2π/T}n∈Z, which are exactly the points on the Nyquist diagram. The result
then follows by taking the limit as T →∞, analogous to the classical derivation of the
Fourier transform from the Fourier series.

We begin by observing that the point on the Nyquist diagram of G corresponding
to frequency ω ∈ R is precisely zG(ejωt). Set u = aejωt, then y = G(u) = αaejωt+jψ, where
α = ∣G(jω)∣ and ψ =∠G(jω). A direct calculation gives

⟨u∣y⟩ = ∫ T

0
u(t)ȳ(t)dt

= Tαa2ejφ,

∥u∥ = √
Ta,

∥y∥ = √
Tαa,

where ⟨⋅∣⋅⟩ is the inner product on L2,T. It follows immediately that

zG(u) = αejψ,

that is, the point on the Nyquist diagram of G corresponding to frequency ω.
The next part of the proof closely follows Huang, Ryu, and Yin [82, Thm 3.1]. In the

interests of brevity, we point out only the main arguments and modifications required to
that proof.

Let G be an LTI operator on L2. The restriction of G to L2,T is then an operator on
L2,T. Let B be the set of functions in t given by B = {ejtn2π/T, n ∈ Z}. We show that

zG(span(B)∖ {0}) = Poly (zG(B)). (2.18)

We begin by noting that B is an orthonormal basis for L2,T, and in particular, for all
u, v ∈ B, u ≠ v, ⟨v∣u⟩ = ⟨v∣Gu⟩ = ⟨Gv∣u⟩ = ⟨Gv∣Gu⟩ = 0. Therefore, the result of Part 2 of the
proof of Huang, Ryu, and Yin [82, Thm. 3.1] holds: for all such u, v, we have

zG(span(u, v)∖ {0}) = Arcmin (zG(u), zG(v)).

The only modification required to the proof is that the inner product here is complex
valued, and the real part must be taken. Parts 3 and 4 of the proof of Huang, Ryu, and
Yin [82, Thm. 3.1] show that zG(span(B)∖ {0}) ⊆ Poly (zG(B)) and zG(span(B)∖ {0}) ⊇
Poly (zG(B)) respectively, with the proof requiring only the additional fact that Poly (S)
(in the proof of [82, Thm. 3.1]) is defined for a countably infinite set, as described in Sec-
tion 2.4.1. This concludes the second part of the proof: zG(span(B)∖ {0}) = Poly (zG(B)).

Finally, we extend to aperiodic signals by letting the period T →∞ and the funda-
mental frequency 2π/T → 0. We give the proof here assuming that the Fourier transform
of the input u(t) is Riemann integrable. The result can be extended to arbitrary functions
on L2 using the same machinery for defining the Fourier transform on L2 - see, for
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instance, Rudin [97, Chap. 9]. Alternatively, it follows from [79, Thm. 1]. We first note
that zG(aeiωt) may be computed using the inner product and norm on L2, rather than
L2,T, as a limit, and the result will be unchanged. Let u(t) be an input signal on L2, and
y(t) the corresponding output. The Fourier inversion theorem gives

y(t) = 1√
2π
∫ ∞

−∞
G(jω)û(ω)ejωtdω. (2.19)

Let

∆ω√
2π

∞∑
n=−∞

G(jn∆ω)û(n∆ω)ejn∆ω

be a Riemann sum approximation of the right hand side of (2.19), with uniform spacing
∆ω. By (2.18), we know this sum belongs to

Poly ({G(j∆ω)ejn∆ω0t}n∈Z) ⊆ Poly ({G(jω)ejωt}ω∈R).

Letting ∆ω → 0, we have that the right hand side of (2.19) belongs to Poly ({G(jω)ejωt}ω∈R),
noting that the restriction of the Nyquist diagram to CIm≥0 is compact in C. Note that
this is precisely the h-convex hull of the Nyquist diagram of G.
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3M O N O T O N E O N E - P O RT C I R C U I T S

abstract

Maximal monotonicity is explored as a generalization of the linear theory of
passivity, aiming at an algorithmic input/output analysis of physical models. The
theory is developed for maximal monotone one-port circuits, formed by the series
and parallel interconnection of basic elements. An algorithmic method is presented
for solving the periodic output of a periodically driven circuit using a maximal
monotone splitting algorithm, which allows computation to be separated for each
circuit component. A new splitting algorithm is presented, which applies to any
monotone circuit defined as a port interconnection of monotone elements.

3 .1 introduction

Passivity is the backbone of linear circuit theory. As a system theoretic concept, it provides
a fundamental bridge between physics and computation, well beyond electrical circuits.
Passive linear systems are those that can be realized as port interconnections of passive
elements [15], and the KYP lemma provides an algorithmic framework for the analysis
of passive circuits by convex optimization [98]–[100]. The circuit concept of passivity
has generated amongst the most important developments of control theory over the last
several decades, including dissipativity theory [101], [102], nonlinear passivity theory
[103]–[105], and passivity based control [106]–[109].

This chapter explores the concept of maximal monotonicity as a generalization of the LTI
theory of passivity that retains the fundamental bridge between physics and computation
beyond the world of linear, time-invariant systems.

The property of maximal monotonicity first arose in the study of nonlinear electrical
circuits, in early efforts to extend the tractability of linear, time invariant, passive networks
to networks containing nonlinear resistors. The prototype of a maximal monotone element
was Duffin’s quasi-linear resistor [110], a nonlinear resistor with a non-decreasing i − v
characteristic. Other early forms of monotonicity are found in the work of Golomb [34],
Zarantonello [35] and the work of Dolph [36] on “dissipative” linear mappings. Quasi-
linearity was refined by Minty [37]–[39] to produce the modern concept of maximal
monotonicity, in the context of an algorithm for solving networks of nonlinear resistors.
Desoer and Wu [40] studied existence and uniqueness of solutions to networks of
nonlinear resistors, capacitors and inductors defined by maximal monotone relations.

Following the influential paper of Rockafellar in 1976 [41], maximal monotonicity
has grown to become a fundamental property in convex optimization [42]–[47], forming
the basis of a large body of work on tractable first order methods for large scale and
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nonsmooth optimization problems, which have seen a surge of interest in the last decade.
However, the physical significance of maximal monotonicity in nonlinear circuit theory
has been somewhat forgotten.

The operator-theoretic property of maximal monotonicity can be interpreted, when
defined on an appropriate space, as the incremental form of cyclo-passivity [111]. It
coincides with passivity only for linear systems. Like passivity, maximal monotonic-
ity is preserved under port interconnections [112]. However, unlike passivity, maximal
monotonicity comes equipped with a convex algorithmic theory, for linear and nonlinear
systems. Maximal monotonicity plays an important role in the simulation of nonsmooth
dynamical systems [113], [114]. The first connection between maximal monotone opera-
tors and passive linear systems appears in this area, in the work of Brogliato [115]. This
work inspired a line of research on Lur’e systems consisting of a passive LTI system in
feedback with a nonsmooth maximal monotone operator [116]–[121].

In this chapter, we revisit the classical study of nonlinear electrical networks in light
of recent developments in the theory of maximal monotone operators. We study the
problem of computing the periodic output of a system described by a series/parallel
interconnection of basic elements, which is forced by a periodic input. The solution is
computed using a fixed point iteration in the space of periodic trajectories, revisiting
Zames’ geometric iteration of feedback systems [22] with splitting algorithms for large
scale optimization. The splitting corresponds precisely to the interconnection structure -
computational steps are performed individually for each element. The interconnection
must be monotone, however the elements themselves need not be. The approach of
this chapter is reminiscent of the frequency response analysis of LTI systems using
the transfer functions of their components. Existing frequency response methods for
nonlinear systems are either approximate and limited in their applicability, as in harmonic
analysis [57]–[59], [122], or involve performing a transient simulation and waiting for
convergence [114], [123], [124]. A similar problem has been studied by Heemels et al. [125],
for the class of systems described by a Lur’e-type feedback interconnection of a passive
LTI state space system and a maximal monotone nonlinearity. They use a fixed point
algorithm to perform a time-stepping simulation of the state space model. In contrast,
here we use fixed point algorithms in the space of periodic trajectories.

The first part of this chapter introduces a general framework for modelling monotone
one-port circuits, and a general method for solving their periodic input/output behavior.
In Section 3.2, we motivate our work with a simple example. In Section 3.3, we introduce
the basic theory of maximal monotonicity. In section 3.4, we develop a modelling frame-
work for monotone one-port circuits, built from the series/parallel interconnection of
smaller one-ports. In section 3.5, we develop a computational technique to compute the
periodic output of a periodically driven maximal monotone one-port using off-the-shelf
optimization methods, and introduce a new splitting algorithm which applies to arbitrary
series/parallel circuits. The second part of this chapter applies this computational tech-
nique to two classes of systems. Section 3.6 applies the theory to resistors, inductors and
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3 .2 motivating example

capacitors, and gives two detailed examples, including a large-scale circuit consisting of
300,000 elements. Section 3.7 applies the theory to memristive systems, using the specific
example of a neuronal potassium conductance. Finally, in Section 3.8, several connections
to the literature are explored.

3 .2 motivating example

We begin with a simple example, which motivates the developments of this chapter: the
series interconnection of two resistors (Figure 3.1).

+ −v

i
+ +− −v1 v2

R1 R2

Figure 3.1: Series interconnection of two resistors.

Consider first the linear, time invariant case, vj = Rjij. The series interconnection maps
the applied current i to the port voltage v by the relation v = R1i+R2i. The inverse relation
maps voltage v to current i by i = v/(R1 + R2). A parallel connection is dual: voltage and
current are exchanged, and resistance is replaced by its reciprocal, conductance.

The fundamentals of the circuit remain unchanged if the resistors are each replaced
by a linear passive transfer function. Indeed, the series interconnection of two passive
1-ports remains passive, and the inverse of a passive transfer function is again passive.

If we replace the linear resistors by nonlinear, but passive resistors, however, several
attractive properties of the resistors are lost. A passive resistor can have regions of negative
slope in its i − v curve (Chua, Yu, and Yu [126] give a catalogue of physical examples).
The inverse of such a resistor may not be well defined. If, however, we consider monotone
nonlinear resistors, the fundamentals of the LTI case remain unchanged. Monotonicity
of a resistor means its i − v curve is nondecreasing (see Figure 3.2); most importantly,
invertibility of the interconnection is retained (in an algorithmic sense, which will be
made clear in Section 3.5).

passive, not monotone monotone, not passive

i

v

i

v

Figure 3.2: The i-v curves of a passive and a monotone resistor.
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3 .3 maximal monotone relations

The property of monotonicity connects the physical property of energy dissipation in a
device to algorithmic analysis methods. Given a Hilbert space H, recall that a relation
S ⊆H ×H is called monotone if

⟨u1 − u2∣y1 − y2⟩ ≥ 0

for any (u1, y1), (u2, y2) ∈ S. A monotone relation is called maximal if it is not properly
contained in any other monotone relation.

Monotonicity is preserved under a number of operations. The proof of the following
lemma may be found in [44].

Lemma 3.1. Consider relations G and F which are monotone on H. Then

1. G−1 is monotone;

2. G + F is monotone;

3. αG is monotone for α > 0.

Maximality is preserved under inversion. However, in general, maximality is not
preserved when two relations are added (indeed, their sum may be empty). We make
the following assumption on summations throughout the rest of this chapter, which
guarantees maximality of the sum, by [127, Thm. 1].

Assumption 3.1. Any summation of two relations G and F obeys

int dom F ∩dom G ≠ ∅
or int dom G ∩dom F ≠ ∅,

where dom S denotes the domain of the relation S. ⌟
This assumption is sufficient (but not necessary) for the existence of solutions to the

summation (that is, the resulting relation is nonempty). We omit the proof of this fact.
Throughout this chapter, we will consider spaces of periodic signals. A trajectory

w(t) is said to be T-periodic if w(t) = w(t + T) for all t. A T-periodic signal is described
by a single period, and can be identified with a signal in a space such as L2,[0,T] or l2,[0,T],
as defined in Section 1.1.

3 .4 monotone one-port circuits

The systems considered in this chapter are electrical one-port circuits. The study of
circuits modelled as one-ports is classical, dating back to work by Foster [128], Brune [13],
Bott and Duffin [15], and others. In the spirit of this classical work, and of the “tearing,
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zooming and linking” modelling methodology advocated by Willems [28], we will model
one-port circuits by building them as series and parallel interconnections of smaller
one-port circuits.

One-port circuits have two external terminals. The port voltage v may be measured
across these terminals, and the port current i may be measured through them. We assume
that each of these variables takes values in R. A one-port circuit E is defined by a relation
on L2,T between current and voltage. We denote by d(E) ∈ {i → v, v → i} the direction of
the relation E, either current to voltage (current controlled) or voltage to current (voltage
controlled). We will often denote current controlled circuits by R, and voltage controlled
circuits by G. We say that E is a µ-monotone one-port if it is defined by a µ-monotone
relation.

3 .4 .1 Series and parallel interconnections

Two one-ports may be combined to build a new one-port by series or parallel intercon-
nection. These are illustrated in Figure 3.3.

v1+ −

v2 +−

+

−
v

i

i

i1

i2

v1

v2 +−

+

−
v

i

i

i1

i2

+−

Figure 3.3: Series (left) and parallel (right) interconnections of two 1-ports.

When two one-ports are connected in parallel, their relations must be from voltage to
current. If they are not, one or both relations must be inverted before interconnection.
Let G1 and G2 be two one-port circuits such that d(G1) = d(G2) = v → i. For a parallel
interconnection, the composition of Kirchoff’s laws and the relations G1 and G2 creates a
natural forward relation from voltage to current, as follows.

1. KVL: v = v1 = v2

2. Device: (v1, i1) ∈ G1, (v2, i2) ∈ G2

3. KCL: i1 + i2 = i.

We therefore have a new relation G = G1 +G2, d(G) = v → i. This is illustrated in the left
of Figure 3.4. Calculating the inverse relation, we have

i ∈ (G1 +G2)(v)
G1(v) ∈ i −G2(v)

v ∈ G−1
1 (i −G2(v)),
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G1

G2

v i
G−1

1

G2

−
i v

Figure 3.4: Block diagram of parallel interconnection, illustrating parallel forward relation from
voltage to current, and negative feedback relation from current to voltage.

R1

R2

i v
R−1

1

R2

−
v i

Figure 3.5: Block diagram of series interconnection, illustrating parallel forward relation from
current to voltage, and negative feedback relation from voltage to current.

which is the negative feedback interconnection of G−1
1 and G2, illustrated in the right of

Figure 3.4.

For a series interconnection, the roles of current and voltage are reversed. Letting R1

and R2 be two one-port circuits such that d(R1) = d(R2) = i → v, their series interconnec-
tion gives a relation from current to voltage, as follows.

1. KCL: i = i1 = i2

2. Device: (i1, v1) ∈ R1, (i2, v2) ∈ R2

3. KVL: v1 + v2 = v.

The new relation is R = R1 + R2, with d(R) = i → v. The inverse relation, from v to i, is the
negative feedback interconnection of R−1

1 and R2. This is illustrated in Figure 3.5.

Monotonicity of circuits is preserved under series and parallel interconnection. Pre-
cisely, we have the following.

Proposition 3.1. 1. Let E1 and E2 be monotone one-port circuits such that d(E1), d(E2) ∈{i → v, v → i}. Then the series and parallel interconnections of E1 and E2 are both monotone
one-ports.

2. Let G1 and G2 be one-port circuits such that G1 is α-monotone, G2 is β-monotone, and
d(G1) = d(G2) = v → i. Then the parallel interconnection of G1 and G2 is (α+ β)-monotone.

3. Let R1 and R2 be one-port circuits such that R1 is α-monotone, R2 is β-monotone, and
d(R1) = d(R2) = i → v. Then the series interconnection of R1 and R2 is (α+ β)-monotone.

Proof. The proof of Part 1 follows directly from the preservation of monotonicity under
inversion and addition (Lemma 3.1). Parts 2 and 3 follow from the fact that if E1 is
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3 .4 monotone one-port circuits

α-monotone and E2 is β-monotone, E1 + E2 is (α + β)-monotone:

⟨u1 − u2∣(E1 + E2)u1 − (E1 + E2)u2⟩
=⟨u1 − u2∣E1u1 − E1u2⟩+ ⟨u1 − u2∣E2u1 − E2u2⟩
≥(α + β)∥u1 − u2∥2.

Preservation of monotonicity under port interconnections is explored in more detail
by Çamlibel and van der Schaft [112].

Repeatedly applying series and parallel interconnections allows a collection of one-
port circuits to be assembled into a single, larger one-port circuit, using the relational
operations of inversion and addition.

3 .4 .2 Monotonicity and cyclo-passivity

Monotone one-ports have close connections to the classical theory of feedback systems,
and in particular, passivity and cyclo-passivity.

Cyclo-passivity is a generalisation of passivity to storages that are not necessarily
lower bounded, first introduced by Willems [111] and later developed by Hill and Moylan
[129]. For recent work on cyclo-passivity of multi-ports, see van der Schaft [130] and
van der Schaft and Jeltsema [131], [132]. The incremental version of this property was first
studied by Trip and De Persis [133]. We define incremental cyclo-passivity as follows:

Definition 3.1. A relation S on L2,(−∞,∞) is said to be incrementally cyclo-passive if, for all(u1, y1), (u2, y2) ∈ S each supported on [−T, T] and with the property that u1(−T) = u1(T)
and u2(−T) = u2(T) for some fixed T (respectively for y1 and y2), then

⟨u1 − u2∣y1 − y2⟩ ≥ 0. ⌟
This corresponds to monotonicity on the space of all periodic trajectories of any

period. The property required for the computational methods described in this paper,
monotonicity on the space of periodic signals with a particular period, is a weaker notion.

We conclude this section by remarking that the preservation of monotonicity under
port interconnection, proved in Proposition 3.1, can be reinterpreted in terms of negative
feedback. As shown in Figures 3.4, the negative feedback interconnection of two operators
F and G can be represented as a parallel interconnection of F−1 and G. Proposition 3.1
then allows us to recover the incremental form of the fundamental theorem of passivity.

Corollary 3.1. Given two operators F and G, each monotone on a Hilbert space H, their negative
feedback interconnection (F−1 +G)−1 is monotone on H.
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monotone one-port circuits

3 .5 algorithmic steady-state analysis of series/parallel monotone

one-ports

In this section, we develop an algorithmic method for computing the periodic response
of a monotone one-port which is forced by a periodic input. We consider a circuit made
of series and parallel interconnections of one-port elements, each defining a (discrete
time) monotone operator on l2,[0,T]. The circuit defines a monotone operator M. Concrete
examples of such circuits are given in Sections 3.6 and 3.7.

Without loss of generality, we consider the problem of computing the “output” current
i⋆ of the monotone operator M corresponding to an “input” voltage v⋆.

We compute the solution as the fixed point of an iterative splitting algorithm deter-
mined from the series and parallel structure of the circuit. The algorithm is first presented
for two elements, then generalized to an arbitrary composition of series and parallel
interconnections.

3 .5 .1 Splitting algorithms for two element circuits

There is a large body of literature on splitting algorithms, which solve problems of the
form 0 ∈ M1(u)+ M2(u), where M1 + M2 is a maximal monotone relation. If M consists
of two elements, connected in series or parallel, we can convert our problem to this
form by writing 0 ∈ M1(i)+ M2(i)− v⋆ (assuming a series interconnection - the parallel
interconnection is obtained by exchanging i and v). The offset −v⋆ does not affect the
monotonicity properties of M. Splitting algorithms allow computation to be performed
separately for the components M1 and M2, and are useful when computation for the
individual components is easy, but computation for their sum is hard. Here, we describe
two splitting algorithms - the forward/backward splitting, and the Douglas-Rachford
splitting. Given an operator S and a scaling factor α, the α-resolvent of S is defined to be
the operator

res αS ∶= (I + αS)−1.

If S is maximal monotone, res S is single-valued [38].

Forward/backward splitting

The simplest splitting algorithm is the forward/backward splitting [134]–[136]. Suppose
M1 and res αM2 are single-valued. Then:

0 ∈ M1(x)+ M2(x)
⇐⇒ 0 ∈ x − αM1(x)− (x + αM2(x))
⇐⇒ (I + αM2)x ∋ (I − αM1)x

⇐⇒ x = res αM2(I − αM1)x.

62
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one-ports

The fixed point iteration xj+1 = res αM2(xj − αM1(xj)) is the forward/backward splitting
algorithm. The most general convergence conditions for this algorithm are given by
Giselsson and Moursi [53, §6], which guarantee that this iteration is an averaged operator.
These conditions may be summarised as follows.

Proposition 3.2. Let µ ≥ 0, ω ≥ 0 and β > 0, and M1 and M2 be operators on a Hilbert space H.
The forward/backward algorithm, with scaling factor α ∈ (0, 2/(β + 2µ)), converges to a zero of
M1 + M2, if one exists, in each of the following cases:

• M1 is maximally µ-monotone, M1 −µI is 1/β-cocoercive, M2 is maximally (−ω)-monotone
and µ ≥ ω.

• M1 is maximally (−ω)-monotone, M1+ωI is 1/β-cocoercive, M2 is maximally µ-monotone
and µ ≥ ω.

• M1 is β-Lipschitz, M2 is maximally µ-monotone and µ ≥ β.

Douglas-Rachford splitting

One of the most successful splitting algorithms is the Douglas-Rachford algorithm [137],
[138], which forms the basis of the Alternating Direction Method of Multipliers [139].

Given an operator S, its reflected resolvent, or Cayley operator, is the operator

RαS ∶= 2res αS − I.

Given two operators M1 and M2, a scaling factor α and an initial value z0, the Douglas-
Rachford algorithm is the iteration in k given by

zk+1 = T(zk),

xk = res αM2 zk,

where T is given by

T = 1
2
(I + RαM1 RαM2), (3.1)

and xk = res αM1 zk converges to a zero of M1 + M2.
Giselsson and Moursi [53, Thm 5.1] give the most general conditions for convergence

of the Douglas-Rachford algorithm, which guarantee that T is averaged.

Proposition 3.3. Let M1 and M2 be operators on a Hilbert space H. Let µ > ω ≥ 0 and
α ∈ (0, (µ −ω)/(2µω)). The Douglas-Rachford algorithm converges to a zero of M1 + M2, if one
exits, in each of the following cases.

• M1 is maximally (−ω)-monotone and M2 is maximally µ-monotone.

• M2 is maximally (−ω)-monotone and M1 is maximally µ-monotone.
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monotone one-port circuits

3 .5 .2 A nested splitting algorithm for three element circuits

If M is composed of three elements, with one series interconnection and one parallel
interconnection (see Figure 3.6), M has the form M = M1 + (M2 + M3)−1, and we can
convert our problem to the form 0 ∈ (M1 + (M2 + M3)−1)(u) again by offsetting by the
input current or voltage. A naive approach to solving this problem is to using a splitting
algorithm such as the forward/backward algorithm, with the resolvent step applied for
M1 and the forward step applied for (M2 +M3)−1. Applying this forward step amounts to
solving y = (M2 + M3)−1(u) for some u, which may be rewritten as 0 ∈ (M2 + M3)(y)− u.
This can be solved by again applying the forward/backward algorithm.

+

− i

v?

+

−

v M3

M2

M3

M1

M2

+

− i?

v M1

Figure 3.6: The two possible configurations of three elements with one series interconnection and
one parallel interconnection.

This naive procedure has poor complexity: for every forward/backward step for
M1 + (M2 + M3)−1, an entire fixed point iteration has to be computed for (an offset version
of) M2 + M3. In this section, we propose an alternative procedure. Rather than apply a
forward step for the relation (M2 + M3)−1, we simply apply a single step of the fixed point
iteration needed to compute this forward step, using the forward/backward algorithm.
Assume, without loss of generality, that d(M1) = i → v and d(M2) = d(M3) = v → i (the
configuration shown on the left of Figure 3.6). Suppose that v⋆ ∈ (M1 + (M2 + M3)−1)(i).
Assume that M3, res α1 M2 and res α2 M1 are single-valued. We then have:

v⋆ ∈ v + M1(i) (3.2)

v ∈ (M2 + M3)−1(i), (3.3)

where v is the voltage over M2, illustrated on the left of Figure 3.6. Equation (3.2) gives

i + α2M1(i) ∋ i − α2v + α2v⋆

i = (I + α2M1)−1(i − α2v + α2v⋆)
i = res α2 M1(i − α2v + α2v⋆).

Equation (3.3) gives

i ∈ (M2 + M3)(v)
v + α1M2(v) ∋ v − α1M3(v)+ α1i

v = (I + α1M2)−1(v − α1M3(v)+ α1i)
v = res α1 M2(v − α1M3(v)+ α1i).
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one-ports

This shows that a fixed point of the iteration

vk+1 = res α1 M2(vk − α1M3(vk)+ α1ik)
ik+1 = res α2 M1(ik − α2vk+1 + α2v⋆)

is a solution to our original problem. In the next section, we generalize this algorithm to
an arbitrary series/parallel monotone one-port, and in Theorem 3.1, we give a general
condition under which the algorithm is guaranteed to converge to such a fixed point.

3 .5 .3 A nested splitting algorithm for arbitrary series/parallel circuits

In this section, we introduce a new splitting algorithm, the nested forward/backward algo-
rithm, which generalizes the algorithm described in the previous section to monotone
one-ports with arbitrary series and parallel interconnections, which have the general
form shown in Figure 3.7 (allowing elements to be open circuits, short circuits, or whole
subcircuits). We assume for simplicity that the relations Gj and Rj are single-valued,
although the extension to multi-valued relations is straightforward.

+

− in

vn

+

− in−1

vn−1

+

− i1

v1

+

−

v0 R0

R1Rn−1

Gn−1

Rn

Gn

Figure 3.7: Circuit structure with nested series and parallel interconnections. Rn represents a
one-port whose i − v relation is known, Gn represents a one-port whose v − i relation is known.

The v − i relation of the circuit in Figure 3.7 is given by

in = (Rn + (Gn + (. . . + (R1 + R0)−1 . . .)−1)−1)−1(vn). (3.4)

If each inversion is solved using a fixed point iteration, the number of fixed points
that must be computed scales with order O(mn), where n is the number of inverses in
Equation (3.4), and m is the number of steps needed to compute each inverse. Following
the argument of the previous section, the nested forward/backward algorithm, given
in Algorithm 1, solves equations of the form (3.4) by replacing inverse operators with
a single step of the forward/backward iteration needed to compute them. In this way,
every inversion is computed simultaneously, using a single fixed point algorithm.

Theorem 3.1. Algorithm 1 converges to a solution of Equation 3.4 as k →∞ if R0 is coercive
and Lipschitz, all the Rj, Gj are monotone for j = 1, . . . , n, and the eigenvalues of A all lie within
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monotone one-port circuits

Algorithm 1 Nested Forward/Backward Algorithm
1: Data: Step sizes αj, j = 1, . . . , 2n − 1, external signal vn, convergence tolerance ε.
2: for j = 1, . . . , n do
3: Initialize v1

j−1, i1
j .

4: end for
5: k = 1
6: do
7: ik+1

1 = res α1R1(ik
1 − α1R0(ik

1)+ α1vk
1)

8: for j = 2, . . . , n do
9: vk+1

j−1 = res α2j−2Gj(vk
j−1 − α2j−2ik+1

j−1 + α2j−2ik
j )

10: ik+1
j = res α2j−1Rj(ik

j − α2j−1vk+1
j−1 + α2j−1vk

j )
11: end for
12: k = k + 1.
13: while maxj(∣vk+1

j − vk
j ∣, ∣ik+1

j − ik
j ∣) > ε

the unit circle, where A is defined as the matrix

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1γ1 γ1α1 0 0 . . .

α2β1γ2γ1 γ2(1+ γ1α1α2) γ2α2 0 . . .

α3α2β1γ3γ2γ1 α3γ2γ3(1+ γ1α1α2) γ3(1+ γ2α2α3) γ3α3 . . .

α4α3α2β1γ4γ3γ2γ1 α4α3γ4γ3γ2(1+ γ1α1α2) α4γ4γ3(1+ γ2α2α3) γ4(1+ γ3α3α4) . . .

⋮ ⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where, for j = 1, . . . , n, γ2j−2 is a Lipschitz constant of res α2j−2Rj , γ2j−1 is a Lipschitz constant of
res α2j−1Gj and β1 is a Lipschitz constant of the operator (I − α1R0).

To clarify, the constants αj may be chosen to tune the convergence rate of the algorithm.
The constants β1 and γj must be Lipschitz constants for the relevant operators. Coercivity
and Lipschitz continuity of R0 means that α1 can be chosen so that 0 < β1 < 1 [44, p.
39]. Monotonicity of Rj and Gj for all j implies that all resolvents used in the algorithm
are nonexpansive, so the γj can always be set to 1, and this gives the simplest test for
convergence. A less conservative test is given by setting the γj to their minimum possible
values.

Proof of Theorem 3.1. We begin by showing that a fixed point of the iteration in Algo-
rithm 1 is a solution to Equation 3.4. Indeed, substituting vk+1

j = vk
j and ik+1

j = ik
j into

lines 7, 9 and 10 of Algorithm 1 gives

v1 = R1(i1)+ R0(i1)
ij = Gj(vj−1)+ ij−1

vj = Rj(ij)+ ij−1,
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3 .6 rlc circuits

from which we obtain

i1 = (R1 + R0)−1(v1)
i2 = (R2 + (G2 + (R1 + R0)−1)−1)−1(v2),

and so on, to arrive at Equation 3.4, as required.
We now show that Algorithm 1 converges to a fixed point under the stated conditions.

We simplify notation by defining uj = ij, j odd, and uj = vj, j even.
Let uk and wk be two sequences of iterates generated by Algorithm 1, with the same

input uk
n = wk

n = v⋆, and denote uk
j −wk

j by ∆uk
j . It then follows from lines 7, 9 and 10 of

Algorithm 1 that, for j = 1, . . . , 2n − 1,

∥∆uk+1
1 ∥ ≤ γ1∥∆uk

1 − α1∆R0(uk
1)+ α1∆uk

2∥
∥∆uk+1

j ∥ ≤ γj∥∆uk
j − αj∆uk+1

j−1 + αj∆uk
j+1∥,

from which it follows, via the triangle inequality, that

∥∆uk+1
1 ∥ ≤ γ1β1∥∆uk

1∥+ γ1α1∥∆uk
2∥

∥∆uk+1
j ∥ ≤ γj∥∆uk

j ∥+ γjαj∥∆uk+1
j−1 ∥+ γjαj∥∆uk

j+1∥,

where ∆uk
n = 0 for all k. Let n(∆uk) denote the vector (∥∆uk

1∥, ∥∆uk
2∥, ∥∆uk

3∥, ∥∆uk
4∥, . . .)⊺. It

follows that

n(∆uk+1) ≤ An(∆uk)
≤ Akn(∆u1),

where A is the matrix given in the statement of the theorem. It follows from the non-
negativity of n(∆uk+1) (or from the elementwise nonnegativity of A) that Akn(∆u1) is
elementwise nonnegative for all k. We then have 0 ≤ n(∆uk+1) ≤ zk+1, where zk+1 is the
solution to the difference equation zk+1 = Azk with initial condition n(∆u1). Since the
eigenvalues of A are within the unit circle, it is a standard result of linear systems theory
that there exist a norm ∥⋅∥P and rate 0 < λ < 1 such that ∥zk+1∥P ≤ λ∥zk∥P. It follows that
the sequence n(∆uk) converges to the zero vector in the norm ∥⋅∥P at least as fast as the
sequence zk. It then follows from the Banach fixed point theorem that each uk

j converges
to a limit u⋆j as k →∞, which completes the proof.

3 .6 rlc circuits

Here, we consider one-port circuits formed by the series and parallel interconnection of
resistors, capacitors and inductors.

A resistor is a relation R on R, the device law, between current and voltage:

R = {(i, v) ∈ R×R ∣ v ∈ R(i)}
or R = {(v, i) ∈ R×R ∣ i ∈ G(v)} .
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A resistor defines a 1-port relation on L2,[0,T] by applying the relation R at each time:

S = {(v, i) ∈ L2,[0,T] × L2,[0,T] ∣ (v(t), i(t)) ∈ R for all t} .

A capacitor is a relation C on L2,[0,T] between current and voltage, defined by a device
law C(⋅) ∶ R→ R, which is assumed to be a differentiable function:

C = {(i, v) ∈ L2,[0,T] × L2,[0,T] ∣ i ∈ d
dt

C(v)}

An inductor is given by a relation L on L2,[0,T] between voltage and current, defined by a
device law L(⋅) ∶ R→ R, which again is assumed to be a differentiable function:

L = {(v, i) ∈ L2,[0,T] × L2,[0,T] ∣ v ∈ d
dt

L(i)}

The following proposition shows that resistors map T-periodic inputs to T-periodic
outputs, capacitors map T-periodic voltages to T-periodic currents, and inductors map
T-periodic currents to T-periodic voltages.

Proposition 3.4. Memoryless, single-valued relations and the derivative map T-periodic inputs
to T-periodic outputs.

Proof. Let f be a memoryless, single-valued relation, that is, a relation between u and y
such that y(t) = f (u(t)). Then y(t + T) = f (u(t + T)) = f (u(t)) = y(t).

The property also holds for the derivative:

du(t)
dt

= lim
h→0

u(t)+ u(t + h)
h

= lim
h→0

u(t + T)+ u(t + T + h)
h

= du(t + T)
dt

.

The following proposition gives a characterization of the monotonicity of resistors on
L2,[0,T] in terms of their devices laws.

Proposition 3.5. A resistor is monotone on L2,[0,T] if and only if its device law defines a monotone
relation on R between i(t) and v(t) for all t.

Proof. If: By monotonicity of the device law on R, we have

(i1(t)− i2(t))(v1(t)− v2(t)) ≥ 0 for all t,

from which it follows that

⟨i1 − i2∣v1 − v2⟩ = ∫ T

0
(i1(t)− i2(t))(v1(t)− v2(t))dt

≥ 0.
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3 .6 rlc circuits

Only if: Assume by contradiction that the device law is not monotone on R, that is, there
exist ι1, ι2 ∈ R such that

(ι1 − ι2)(R(ι1)− R(ι2)) < 0.

Taking the constant signals i1(t) = ι1, i2(t) = ι2 on L2,[0,T] shows that the resistor is not
monotone on L2,[0,T].

A natural question is whether the same can be said for inductors and capacitors - are
these devices monotone if their device laws C and L are monotone? A striking result of
Kulkarni and Safonov [72] is that this is true if and only if the device laws are linear.

Proposition 3.6. Capacitors and inductors with monotone device laws on R are monotone on
L2,[0,T] for all T ≥ 0 if and only if their device laws are linear.

Proof. The result is given by [72, Lemma A.2], noting that the signals used in their proof
(Equation A.4) are truncated square waves, which are signals on L2,[0,T] for T equal to
the length of the truncation.

We now collect some results which show that, under mild conditions, series/parallel
RLC circuits define operators on L2,[0,T].

Proposition 3.7. A series (resp. parallel) interconnection of n one-ports which map T-periodic
currents (voltages) to T-periodic voltages (currents) also maps T-periodic currents (voltages) to
T-periodic voltages (currents).

Proof. Periodicity is preserved under summation of signals, and therefore preserved by
Kirchoff’s laws. Indeed, if y(t) = u1(t)+ u2(t), and u1 and u2 are both T-periodic, then
y(t + T) = u1(t + T)+ u2(t + T) = u1(t)+ u2(t) = y(t).

Next, we show that one-port circuits which obey simple conditions on their inter-
connections map periodic inputs to periodic outputs. Other classes of systems with this
property include contractive state space systems [140] and approximately finite memory
input/output maps [141].

Theorem 3.2. Let M be the relation on L2,[0,T], from either v to i or i to v, of a 1-port con-
structed from the series and parallel interconnection of n constituent one-ports Mi, such that the
construction obeys the following conditions

1. Mi ∶ L2,[0,T] → L2,[0,T] for all i;

2. any one-port which must be inverted during the construction is coercive and Lipschitz.

Then M maps any input in L2,[0,T] to a unique output in L2,[0,T].
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Proof. By assumption, each of the relations Mi maps T-periodic inputs to T-periodic
outputs (we denote this property by PIPO for the remainder of this proof). We show that
constructing a circuit under the given conditions preserves this property. This amounts to
showing that the PIPO property is preserved under summation and inversion. We have
already observed that it is preserved under summation in Proposition 3.7. It remains to
show that inversion preserves the PIPO property if the one-port to be inverted is coercive
and Lipschitz. We do this by showing invertibility on the space of periodic trajectories.
Let F be µ-coercive and λ-Lipschitz. Define the incremental relation ∆F(u) = F(u)− y⋆

on L2,[0,T]. ∆F has the same coercivity and Lipschitz properties as F. We show that the
operator I − γ∆F is a contraction mapping on L2,[0,T] for small enough γ > 0. Indeed,

∥(I − γ∆F)(x)− (I − γ∆F)y∥2

= ∥x − y∥2 − 2γ ⟨x − y∣∆Fx −∆Fy⟩+ γ2∥∆Fx −∆Fy∥2

≤ (1− 2γµ + γ2λ2) ∥x − y∥2,

where the inequality follows from the definitions of coercive and Lipschitz operators.
Solving 0 < (1− 2γµ + γ2λ2) < 1 gives an allowable range of γ ∈ (0, 2µ/λ2) for I − γ∆F to
be a contraction mapping on L2,[0,T]. It then follows from the Banach fixed point theorem
that I − γ∆F has a unique fixed point u⋆ ∈ L2,[0,T] [44, §2.4.2], [142]:

u⋆ = u⋆ − γ∆F(u⋆)
⇐⇒ ∆F(u⋆) = 0

⇐⇒ F(u⋆) = y⋆.

This shows that F is invertible on L2,[0,T].

When applied to RLC circuits, condition 1 of Theorem 3.2 requires capacitors to be
connected in parallel and inductors to be connected in series.

The definitions of inductors and capacitors above are time-invariant. Georgiou, Jabbari,
and Smith [143] define time-varying, or adjustable, capacitors and inductors, termed the
varcapacitor and varinductor:

i(t) = c(t) d
dt

(c(t)v(t)) varcapacitor

v(t) = l(t) d
dt

(l(t)i(t)) varinductor.

If i(t), v(t), l(t) and c(t) are T-periodic, these devices are monotone on L2,[0,T].

Proposition 3.8. Varcapacitors with T-periodic c(t) and varinductors with T-periodic l(t) are
monotone on L2,[0,T].
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3 .6 rlc circuits

Proof. For a varcapacitor, we have

∫ T

0
(v1(t)− v2(t))(i1(t)− i2(t))dt

=∫ T

0
c(t)(v1(t)− v2(t)) d

dt
(c(t)(v1(t)− v2(t)))dt

=∫ T

0

d
dt

1
2

c2(t)(v1(t)− v2(t))2 dt

=1
2

c2(T)v2(T)− 1
2

c2(0)v2(0)
=0.

Likewise, for a varinductor, we have

∫ T

0
(v1(t)− v2(t))(i1(t)− i2(t))dt

=∫ T

0
l(t)(i1(t)− i2(t)) d

dt
(l(t)(i1(t)− i2(t)))dt

=∫ T

0

d
dt

1
2

l2(t)(i1(t)− i2(t))2 dt

=1
2

l2(T)i2(T)− 1
2

l2(0)i2(0)
=0.

We now give two detailed examples of the steady-state analysis of an RLC circuit.
In order to obtain relations on l2,[0,τ], the derivative is discretized to give an operator D.
Any discretization may be used. For the examples in this chapter, we use the backwards
finite difference, given by the relation

D = {(u, y) ∣ y = τDτu},

where Dτ is the τ × τ matrix

Dτ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 −1

−1 1 . . . 0 0

0 −1 . . . 0 0

⋮ ⋮ ⋱ ⋮ ⋮
0 0 . . . −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that D is a maximal monotone relation, as Dτ +D⊺
τ ⪰ 0 [44, §2.2.3]. To obtain an

accurate discrete model, a sufficient number of time steps must be used.

Example 3.1. An envelope detector is a simple nonlinear circuit consisting of a diode in
series with an LTI RC filter (Figure 3.8). It is used to demodulate AM radio signals.

We model the diode using the Shockley equation:

v = Rdiode(i) ∶= nVT ln( i
Is
+ 1) ,
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monotone one-port circuits

where Is is the reverse bias saturation current, VT is the thermal voltage and n is the
ideality factor. The i−v graph of the diode relation is strictly increasing with no endpoints;
the diode relation is therefore maximal monotone.

The RC filter is itself a parallel interconnection of a resistor and capacitor, which maps
voltage to current:

GRC = CD + 1
R

I.

As GRC is linear, it has a Lipschitz constant L equal to its largest singular value and is
coercive with constant m = λmin((GRC +G⊺

RC)/2) [44].
The incremental voltage ∆v = v − v⋆ is given as a relation of i by

∆v = Rdiode(i)+ RRC(i)− v⋆.

Given an input voltage v⋆, we solve for the corresponding current i⋆ using the Douglas-
Rachford splitting. This involves applying both the resolvents res RC and res diode. The
resolvent res RC is given by (I + λG−1

RC)−1. This matrix is pre-computed and stored in
memory. The resolvent of the diode, res diode, is given by res −1

diode(x) = (I + λRdiode(x)−
λv⋆). There is no analytic expression for this operator. Rather, the resolvent is computed
numerically using the guarded Newton algorithm [45].

Figure 3.9 shows the results of performing this scheme with an input of v⋆ = sin(2πt)
A, with R = 1 Ω, C = 1 F, Is = 1× 10−14 A, n = 1 and VT = 0.02585 V. The number of time
steps used is 500. ⌟
Example 3.2. In this example, we analyze the large-scale circuit shown in Figure 3.10,
which consists of n identical units, each consisting of a diode and LTI RC filter. The diode
and RC filter are modelled as in Example 3.1.

When viewed as an interconnection of one-ports, the circuit has a recursive structure.
Following the notation of Figure 3.10, for 1 ≤ m ≤ n, we have:

vm = Rm(im)
= Rdiode(im)+G−1

n (im),

im = Gm−1(vm−1)
= GRC(vm−1)+ R−1

m−1(vm−1).

+

−

v

i

R C

Rdiode

Figure 3.8: An envelope detector, configured as a 1-port.
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Figure 3.9: Input voltage v⋆ and the resulting current i for an envelope detector. One period of a
periodic input and output is shown. Circuit parameters are R = 1 Ω, C = 1 F, Is = 1× 10−14 A, n = 1
and VT = 0.02585 V. Algorithmic parameters are α = 0.01, ε = 1× 10−5 and 500 time steps.

+

− in

vn

+

− in−1

vn−1
+

− i1

v1

+

−

v0

G1Gn−1Gn R1Rn−1

Figure 3.10: Circuit for Example 3.2. The circuit consists of n repeated units, each consisting of a
diode and LTI RC filter.

The base case is G1 = GRC. This circuit has the form of Figure 3.7, with R0 = G−1
RC, Rj =

Rdiode and Gj = GRC for all j > 1. The circuit is solved using the nested forward/backward
algorithm introduced in Section 3.5.3.

Figure 3.11 shows the results of performing this scheme with n = 100, 000 repeated
units (a total of 300,000 components). The input is v⋆ = 1 + sin(2πt) A, with circuit
parameters R = 1 Ω, C = 1 F, Is = 1 × 10−14 A, n = 1 and VT = 0.02585 V. The number of
time steps used is 256. With n = 100, 000 units, computation took 1937 s on a standard
desktop computer. With n = 10 units, computation took an average of 243 ms, over 21
runs.

⌟
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Figure 3.11: Input voltage vn and the resulting current in for the circuit of Figure 3.10, with
n = 100, 000. Circuit parameters are R = 1 Ω, C = 1 F, Is = 1 × 10−14 A, n = 1 and VT = 0.02585 V.
Algorithm parameters are αj = 1.5 for all j and ε = 1× 10−4. One period of a periodic input and
output is shown.

3 .7 memristive systems

In 1976, Chua and Kang [144] introduced the class of memristive systems, described by
state space models of the form

ẋ = f (x, u, t) (3.5a)

y = g(x, u, t)u. (3.5b)

This model class describes systems which behave like resistors, in that they cannot store
energy and do not produce a phase shift, but, unlike resistors, do have a memory. This
work was motivated by systems such as the Hodgkin-Huxley neural membrane model
[145], thermistors and discharge tubes. In this section, we show that our methods may be
applied to particular members of this class.

If ẋ = f (x, u) is a contractive, time-invariant state space system and u(t) is a T-periodic
input, there is a unique, globally asymptotically stable T-periodic output y(t) to the
memristive system (3.5) [146]. The memristive system then defines an operator on L2,T,
mapping the T-periodic input u(t) to the T-periodic output y(t).

To determine the monotonicity properties of memristive systems, we use the Scaled
Relative Graph (SRG), introduced in Chapter 2. Recall that an operator is µ-monotone if
and only if its SRG lies in the region {z ∈ C ∣ Re(z) ≥ µ}.

Example 3.3. The Hodgkin-Huxley model represents a nerve axon membrane as a parallel
interconnection of active ion channels with a capacitor [145]. Each ion channel is a time-
varying conductance, which may be modelled as a memristive system. In this example,
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3 .7 memristive systems

we consider the potassium conductance i = GK(v), which is given by the equations

i = ḡKn4(v − vK)
dn
dt

= αn(v)(1− n)− βn(v)n

αn(v) = 0.01(10+ v)
exp(1+ v/10)− 1

βn(v) = 0.125 exp(v/80).

Following Hodgkin and Huxley [147], the constants ḡK and vK are set to 19 m mho/cm2

and 12 mV, respectively. The dynamics in n are contractive [148, Prop. 1], therefore the
potassium conductance defines an operator on L2,[0,T].

The analytical SRG of the potassium conductance is difficult to determine, but we
can test its monotonicity by sampling its SRG. Figure 3.12 shows points in the SRG
of the potassium conductance, computed over signals of the form u = α sin(γt)+ δ, for
real parameters α, γ, δ. This plot suggests that the potassium conductance is (−0.002)-
monotone on L2,[0,T]. While we do not have a theoretical guarantee that this is the case,
we can test whether the potassium conductance behaves as if it is (−0.002)-monotone
when connected in a circuit.

Re

Im

−0.002 0.010

0.005

Figure 3.12: Sampling of the SRG of a potassium conductance.

We consider the parallel interconnection of the potassium current with an LTI resistor,
shown in Figure 3.13. The port relation of this circuit is given by

i = R−1v +GK(v).

Given a periodic input current i⋆, the corresponding voltage is solved using the for-
ward/backward algorithm. The algorithm converges when R ≥ 500 Ω, supporting the
hypothesis that the potassium conductance is (−0.002)-monotone. The Lissajous figure,
or i− v plot, is shown in Figure 3.14 for an input current of i(t) = sin(2πt). The potassium
conductance exhibits the characteristic zero-crossing Lissajous figure of a memristive
system [144]. ⌟
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monotone one-port circuits

3 .8 connections with the literature

The class of systems which can be represented by a series and parallel interconnection of
maximal monotone resistors and LTI capacitors and inductors encompasses Lur’e systems
with a passive LTI system in the forward path and a maximal monotone relation in the
return path. Indeed, if the forward path has a transfer function G(s) and the feedback
path is a relation R, the Lur’e system can be synthesized as the series interconnection of
a resistor with resistance relation R and an LTI network with impedance G(s)−1 (which
can be synthesized using the Bott-Duffin construction [15]). The i − v relation on L2,[0,T]

of this 1-port is i = (R + Ḡ−1)−1(v), where Ḡ is the relation on L2,[0,T] corresponding to G.
Lur’e systems with passive linear part and a maximal monotone nonlinearity in

the feedback path have been a focus of research on nonsmooth dynamical systems
– see, for example, the survey by Brogliato and Tanwani [121]. These systems may
be modelled by differential inclusions, linear complementarity systems or evolution
variational inequalities. A number of specialized time-stepping methods have been
developed for these classes of systems [113]. The periodic response of such Lur’e systems
was first studied by [149]. Heemels et al. [125], give two algorithms specialized for
computing the periodic output of such systems. Given a state space realization, they
show that the system can be represented as a maximal monotone differential inclusion,
and that backwards Euler discretization corresponds to computing the resolvent of this
differential inclusion at each time step. Their first algorithm involves iteratively computing

+

−

i

v R GK

Figure 3.13: Parallel interconnection of an LTI resistor and a potassium conductance.
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Figure 3.14: Lissajous figure of a potassium conductance in parallel with a 500 Ω resistor. The
large signal magnitudes are not physically realistic, but are chosen for illustrative purposes. The
Lissajous figure always passes through the origin, a fundamental characteristic of a memristive
system.
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3 .9 conclusions

this resolvent forward in time. Their second algorithm combines the computation of
this resolvent over a period with a periodic boundary condition. In comparison, the
algorithm we present here iterates through signal space, rather than forwards in time,
and has several advantages. It is independent of a state space realization or differential
inclusion representation - the relations used in computation represent the components of
the system and retain their physical meaning. This structure allows splitting algorithms
to be applied to separate computation for each system component. Other methods for
computing the periodic output of non-smooth and multi-valued systems include the
work of Iannelli, Vasca, and Angelone [150] and Meingast, Legrand, and Pierre [151].

Our method may be regarded as a signal space analog of the shooting method
for solving boundary value problems in the time domain (see, for example, [152]).
Given a transition mapping φ(t, y0) ∶ [0, T]×Rn → Rn, which takes an initial condition
y0 to the output value of a dynamical system at time t, and a boundary condition
φ(T, ⋅) = yT, the shooting method solves for a compatible initial condition by finding a
zero of F(a) ∶= y(T, a)− yT. It is interesting to note that if the dynamical system is order-
preserving, or monotone in the sense of Smith [153] (that is, a ≤ b Ô⇒ φ(t, a) ≤ φ(t, b)
for all t ≥ 0), then F is a monotone operator on Rn.

In the linear, time invariant case, the physical property of passivity allows ques-
tions to be answered in a computationally tractable way, for example, a passive storage
function can be found by solving an LMI [101]. For nonlinear passive systems, these
computationally tractable methods no longer apply, in general. For nonlinear systems
with incremental properties, however, tractable methods do exist. This is the fundamental
result of contraction theory [146] and has been noted more recently in dissipativity anal-
ysis by Verhoek, Koelewijn and Tóth [154] and Forni, Sepulchre and van der Schaft [155].
The approaches in these works differ from that of this paper, however, in their reliance on
differentiable state space models and state-dependent linear matrix inequalities, rather
than monotone operator methods.

3 .9 conclusions

We have applied monotone operator optimization methods to the problem of computing
the periodic output of a periodically forced, maximal monotone one-port circuit. Splitting
algorithms allow the computation to be separated in a way which mirrors the structure
of the system, and a new splitting algorithm has been introduced which is suited to
circuits with nested series/parallel interconnections. This method has been demonstrated
on the classes of circuits built from maximal monotone resistors and LTI capacitors and
inductors, and memristive dynamic conductances such as the neuronal conductances of
the Hodgkin-Huxley model.

The mathematical property of monotonicity connects the physical property of energy
dissipation with a well-established algorithmic theory for computation, for systems
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monotone one-port circuits

modelled as nonlinear operators. This mirrors the connection between energy dissipation
in LTI state space systems and computational methods for LMIs, established by the
theory of dissipativity [101]. In the next chapter, we will show that the algorithmic
methods proposed here may be extended beyond the class of systems formed by the
interconnection of monotone elements, to those systems formed by the difference of
monotone elements. This includes systems with self-sustaining oscillations.
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4O S C I L L AT I O N S I N N E G AT I V E C O N D U C TA N C E C I R C U I T S

The engineer who embarks upon the design of a feedback
amplifier must be a creature of mixed emotions.

— hendrik bode [156]

abstract

Circuits which contain monotone and anti-monotone components may exhibit
rich steady state behaviors, including the excitable rest/spike transitions of conductance-
based neuronal models. The algorithmic methods of the previous chapter are ex-
tended in order to solve such steady-state behaviors, using an adaptation of DC
(difference of convex) programming.

4 .1 introduction

Mixed positive and negative feedback is a ubiquitous mechanism for the generation of
switches and oscillations, in both the natural and artificial worlds [75], [89], [157]–[159].
Negative feedback regulates a passive system to equilibrium. Introducing a local positive
feedback to destabilize the equilibrium allows robust oscillations to be generated. This
mechanism has long been used in electrical circuits to design oscillators, such as the
relaxation oscillator illustrated on the cover of Chua and Desoer’s classic circuit theory
text [159]. The mechanism also underpins biological systems such as the Hodgkin-Huxley
model of a neuron [145], [160].

Beyond phase-plane analysis of two-dimensional mixed feedback systems, such as
the van der Pol and FitzHugh-Nagumo models [161]–[163], there is a dearth of general
methods for the analysis of such systems. The approximate methods of describing
function analysis can be used to analyse systems where the oscillation is known to be
approximately sinusoidal; this method is known, however, to work poorly for relaxation
oscillations [59].

Mixed feedback systems can often be realized as passive electrical circuits containing
a single negative resistance device [159] - this method of creating an oscillator dates back at
least as far as the work of van der Pol [161]. In this chapter, we formalize this approach
using the language of monotone one-ports introduced in Chapter 3. A negative resistance
device is formalized as an anti-monotone one-port; interconnected with a monotone one-
port it forms a Difference-of-Monotone (DM) one-port. The oscillatory steady-state solution
of a mixed feedback system can be expressed as a zero of a mixed-monotone operator.
In the same way as the difference of two convex functions can be minimized using an
adaptation of convex optimization known as Difference of Convex (DC) Programming
[164]–[170], the algorithmic methods of Chapter 3 can be adapted to the DM case to
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solve the steady-state behavior of mixed-monotone one-ports. Unlike existing algorithms
for DC programming, this allows splitting algorithms to be used to exploit the natural
structure of mixed feedback systems.

DM operators and one-ports are formally introduced in Section 4.2. An algorithmic
approach to their analysis is introduced in Section 4.3, and a generalization of the Douglas-
Rachford algorithm is developed for the mixed feedback structure. This is demonstrated
on the van der Pol and FitzHugh-Nagumo systems in Section 4.4.

4 .2 difference-of-monotone one-ports

This chapter studies circuits which are defined by the difference of monotone elements.
Before formalising this notion, we recall some definitions from the theory of convex
optimization. Let H be a Hilbert space.

Definition 4.1. A set C ⊆H is convex if, for all x, y ∈ C, the line {αx + (1− α)y ∣ α ∈ (0, 1)} ⊆
C. ⌟
Definition 4.2. A function f ∶H → [−∞,∞] is convex if its domain is a convex set and

f (ϑx + (1− ϑ)y) ≤ ϑ f (x)+ (1− ϑ) f (y)
for all x, y ∈ dom f and ϑ ∈ (0, 1). f is concave if − f is convex. A function is said to be
proper if its value is never −∞ and is finite somewhere. A function is said to be closed if
its epigraph is a closed set. ⌟
Definition 4.3. Given a convex function f ∶H → [−∞,∞], the subgradient of f , denoted
∂ f , is the set

∂ f ∶= {g ∈H ∣ f (y) ≥ f (x)+ ⟨g∣y − x⟩ for all y ∈H}.

⌟
The following standard result is due to Rockafellar [171, Lemma 1], and largely

captures the reason for the success of monotone operator theory.

Proposition 4.1. Given a convex and proper function f , its subgradient ∂ f is monotone. If f is,
in addition, closed, ∂ f is maximal monotone.

We define an anti-monotone operator as follows.

Definition 4.4. An operator A ∶H →H is anti-monotone if −A is monotone. ⌟
It follows immediately that if f is concave and closed, ∂ f is anti-monotone. Finally,

we define a difference-of-monotone operator.

Definition 4.5. An operator A ∶ H → H is Difference-of-Monotone (DM) if there exist
monotone operators A1, A2 ∶H →H such that A = A1 − A2. ⌟
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4 .2 difference-of-monotone one-ports

We adopt the one-port formalism introduced in Chapter 3, Section 3.4. A Difference-of-
Monotone (DM) one-port is a circuit built from the series and parallel interconnection of
monotone and anti-monotone one-ports. A particularly useful structure is the parallel in-
terconnection of two monotone one-ports and one anti-monotone one-port. As illustrated
in Figure 4.1, this structure can be interpreted as a monotone operator in feedback with
a monotone channel and an anti-monotone channel. The steady state behavior of such a
circuit can be found by solving a zero-finding problem: 0 ∈ A1(v)+ A2(v)− B(v)− i.

+

− i

v A1 A2 −B

A1

A2
v

i −
i v

−B

A−1
1

A2

−B

−

Figure 4.1: Circuit diagram and block diagrams for a mixed feedback interconnection. A1 is
a monotone operator mapping current to voltage, A2 and B are monotone operators mapping
voltage to current.

This parallel structure is general, and does not restrict the behavior of the circuit.
However, by restricting ourselves to circuits in which the anti-monotone element only
disrupts the monotonicity of the circuit in a local region, we can study circuits which
exhibit non-equilibrium behavior but are sufficiently well-behaved to be algorithmically
tractable. A basic but informative example is given by the polynomial x3

3 − x.

Example 4.1. Let A(x) = x3

3 and B(x) = −x. A is maximal monotone and B is maximal
anti-monotone. Graphs of A, B and A+ B are shown in Figure 4.2. A+ B is anti-monotone
on (−1, 1), but monotone everywhere else. ⌟

1

1−1

−1

Figure 4.2: Graphs of A(x) = x3

3 (orange), B(x) = −x (blue) and A(x)+ B(x) (red).
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4 .3 difference-of-monotone programs

The difference of two convex functions can be minimized using the heuristic Convex-
Concave Procedure (CCP), introduced by Yuille and Rangarajan [169]. This procedure
is a descent algorithm, in the sense that the objective value decreases monotonically
[164], [172], although the final value depends on the initial condition. The procedure is
described by Algorithm 2.

Algorithm 2 Convex-Concave Procedure
1: Data: Closed, convex and proper f , concave and proper g, convergence tolerance ε.
2: j = 1
3: do
4: Solve 0 ∈ ∂ f (xj+1)+ ∂g(xj).
5: j = j + 1.
6: while maxj(∣xj+1 − xj∣) > ε

Example 4.2. Let f (x) = x4

12 and g(x) = − x2

2 , and consider the problem argminx∈R f (x) +
g(x). As shown by Lipp and Boyd [164], Algorithm 2 converges to a local extremum of
f (x)+ g(x), that is, to a zero of ∂ f (x)+ ∂g(x).

Step 4 of Algorithm 2 can be rewritten using an intermediate variable zj:

zj ∈ −∂g(xj)
xj+1 = (∂ f )−1(zj).

The procedure thus involves iteratively applying −∂g and (∂ f )−1. The iterates for a
particular choice of initial condition are shown in Figure 4.3.

1

1

Figure 4.3: Iterates of Algorithm 2 for f (x) = x4

12 and g(x) = − x2

2 . ∂ f is plotted in orange, −∂g is
plotted in blue, and the iterates are plotted in grey.

⌟
Example 4.2 demonstrates that the Convex-Concave Procedure of Algorithm 2 in-

volves iteratively inverting one gradient then applying another. Both of these gradients
are maximal monotone operators, which suggests the following extension of the CCP to
arbitrary monotone operators A and B, which solves the problem 0 ∈ A(x)− B(x).
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4 .3 difference-of-monotone programs

Algorithm 3 Difference-of-Monotone Procedure
1: Data: Maximal monotone A, monotone B, initial value x1, convergence tolerance ε.
2: j = 1
3: do
4: Solve xj+1 ∈ A−1B(xj).
5: j = j + 1.
6: while ∣xj+1 − xj∣ > ε

A convergence result for Algorithm 3 has been published by the author and his
colleagues in reference [173].

If A−1 is unknown, it can be computed using a fixed point algorithm, provided A is
maximal. This, however, involves an inner iteration, raising the question of whether the
inner loop can be replaced by a single step, along the lines of Algorithm 1, presented in
Chapter 3. A first step in this direction is to replace the update rule xj+1 ∈ A−1B(xj) (line
4 of Algorithm 3) with the following:

zk+1 = B(xk)
xk+1 = res αAxk + αzk+1.

The second line applies the resolvent of the offset operator x ↦ A(x)− zk+1. The intuition
behind this step is that the inverse A−1 doesn’t need to be applied exactly – it is sufficient
to simply make a step in the right direction (see Figure 4.2), for instance, the first step of
the proximal iteration to invert A at zk+1. It turns out that this scheme is exactly the DC
proximal algorithm of Sun, Sampaio, and Candido [165].

To solve the mixed feedback structure of Figure 4.1, it is desirable to exploit the split
structure A = A1 + A2. Following the same intuition, we propose Algorithm 4, which
replaces A−1 with a single step of the Douglas-Rachford iteration needed to invert it. In
Algorithm 4, we denote the Douglas-Rachford operator, for operators A1 and A2 and
step size α, by Tα(A1, A2):

Tα(A1, A2) ∶= 1
2
(I + RαA1 RαA2). (4.1)

Recall that RαS denotes the Cayley operator 2res αS − I.
Note that a fixed point of this algorithm is a solution to 0 ∈ A1(x) + A2(x) − B(x):

we know, by convergence of the Douglas-Rachford algorithm, that x is a solution to
0 ∈ Aj

1(x)+ A2(x), which is equal to A1(x)+ A2(x)− B(x) at a fixed point. We now make
some remarks on the convergence of the algorithm. The update step of Algorithm 4 can
be rewritten as

zj+1 = (αB res αA1 + Tα(A1, A2))zj. (4.2)

This suggests the following result.

Theorem 4.1. Let A1, A2, B ∶H →H satisfy the assumptions of Algorithm 4, and suppose there
exists D ⊆H such that
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oscillations in negative conductance circuits

Algorithm 4 Difference-of-Monotone Douglas-Rachford
1: Data: Maximal monotone A1, A2, monotone, single-valued B, initial value x1, conver-

gence tolerance ε.
2: Define Aj

1 by x ↦ A1(x)− yj for all j.
3: j = 1
4: do
5: Solve

xj+1 = res αA2(zj)
yj+1 = B(xj+1)
zj+1 = Tα(Aj+1

1 , A2)(zj).

6: j = j + 1.
7: while ∣xj+1 − xj∣ > ε

1. D is closed,

2. Tα(A1, A2)(D) ⊆ D,

3. B res αA1(D) ⊆ D,

4. either A1 or A2 is η-coercive and λ-Lipschitz on D,

5. B is µ-Lipschitz on D.

Then the operator of Equation 4.2 has a Lipschitz constant of

l = (1− 4αη(1− αλ)2 )
1
2 + αµ

on D, and if l < 1 and x1 ∈ D, Algorithm 4 converges to a unique fixed point in D.

The proof uses the following local version of the Banach fixed point theorem.

Lemma 4.1. Let T ∶ D → D, where D is a closed subset of a Hilbert space H. Suppose that T is a
contraction mapping, that is,

∥T(x)− T(y)∥ < ∥x − y∥
for all x, y ∈ D. Then the iteration xk+1 = T(xk) converges to a unique fixed point of T.

Proof. The proof follows the same lines as the standard proof of the Banach fixed point
theorem, using the invariance ofD under T to ensure that the sequence of iterates remains
in D, and the closedness of T to ensure that it contains the limit of the sequence of iterates
(which is shown to be Cauchy). Completeness of H ensures that the limit of this sequence
exists in H.
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4 .4 examples

Proof of Theorem 4.1. If either A1 or A2 is η-coercive and λ-Lipschitz on D, then Rα(A1)
(respectively Rα(A2)) is a contraction with Lipschitz constant [43, p. 20]

(1− 4αη(1− αλ)2 )
1
2

.

The result then follows from the observation that B res αA2 has a Lipschitz constant no
larger than µ, as res αA2 is nonexpansive. The convergence of Algorithm follows from
Lemma 4.1 in the case that l < 1.

4 .4 examples

Example 4.3. The classical van der Pol oscillator [161] is described by the differential
equation

v̈ − µ(1− v2)v̇ + v = 0.

Making the substitution i1 = µv − µ v3

3 gives

v̈ + v = i̇1

i1 = µv − µ
v3

3
,

which has the one-port structure shown in Figure 4.4, where i = 0 and the operators A1,
A2 and B on L2,T (T arbitrary) are described by

A1 ∶ v̂ = s2 + 1
s

î1

A2 ∶ i2 = µ
v3

3
B ∶ i3 = µv,

where û denotes the Laplace transform of the signal u and s denotes the Laplace transform
of the derivative operator. The currents i2 and i3 are the currents through A2 and B,
respectively, and are related to i1 by Kirchoff’s current law: i1 + i2 + i3 = 0.

+

− i

v A1 A2 −B

i1

Figure 4.4: One-port model of the van der Pol ocillator and FitzHugh Nagumo neuron.

To solve for a periodic steady-state solution to the van der Pol oscillator, we apply
Algorithm 4. The period T is set to the approximate period of the steady-state oscillation
as predicted by Cartwright’s formula [174]. The derivative operator is discretized using
the central difference, with periodic boundary conditions, to give the operator

D = {(u, y) ∣ y = TDTu},
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oscillations in negative conductance circuits

where DT is the T × T matrix

DT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1/2 0 . . . −1/2
−1/2 0 1/2 . . . 0

0 −1/2 0 . . . 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Solutions for µ = 0.0002, 1.5 and 10 are shown in Figure 4.5 below. ⌟

5 10 15

−1

0

1

2

Time t

Vo
lt

ag
e

v

Figure 4.5: Steady-state solutions to the van der Pol oscillator for µ = 0.0002 (blue), 1.5 (orange)
and 10 (red). Algorithmic parameters are a step size of α = 0.05, convergence tolerance of ε = 0.01
and 5000 time steps.

Example 4.4. The Hodgkin-Huxley model is a fourth order differential equation which
described the electrical behavior of a nerve axon membrane [145]. The FitzHugh-Nagumo
model [162], [163] is a generalization of the van der Pol oscillator which captures the
main features of the Hodgkin-Huxley model but is two-dimensional, allowing phase-
plane analysis. The FitzHugh-Nagumo model in particular captures excitable behavior –
the neuron model responds passively to sub-threshold inputs, and spikes given super-
threshold inputs. In this example, we exhibit this rest/spike transition, using a DM
program to solve the neuron behavior.

The FitzHugh-Nagumo model is described by the equations

v̇ = v − v3

3
−w + i

τẇ = v − bw.
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4 .5 conclusions

Making the substitution i1 = v − v3

3 gives

v̇ = i1 −w + i

τẇ = v − bw

i1 = v − v3

3
,

which has the one-port structure shown in Figure 4.4, where the port current i is an input,
and the operators A1, A2 and B on L2,T (T arbitrary) are described by

A1 ∶ v̂ = τs2 + bs + 1
τs + b

î1

A2 ∶ i2 = v3

3
B ∶ i3 = v,

where û denotes the Laplace transform of the signal u and s denotes the Laplace transform
of the derivative operator. i is the port current, and the currents i2 and i3 are the currents
through A2 and B, respectively, and are related to i1 by Kirchoff’s current law: i1+ i2+ i3 = i.

Figure 4.6 shows the steady-state behavior of the FitzHugh-Nagumo model, with
a periodic voltage signal, and demonstrates the excitable behavior of the neuron. The
solution method is identical to Example 4.3. ⌟
4 .5 conclusions

Many circuits which spike or oscillate can be represented in a mixed feedback form
– a passive forward path in feedback with the difference of two monotone operators.
This chapter has developed monotone operator methods for solving the steady state
behaviors of such circuits, via an adaptation of Difference of Convex Programming. A
new splitting algorithm, the Difference-of-Monotone Douglas-Rachford algorithm, has
been introduced, the structure of which matches the circuit structure of mixed feedback
oscillators.

The representation of spiking circuits such as the FitzHugh-Nagumo model as the
difference of monotone one-ports gives rise not only to algorithmic methods for solving
their behaviors, but suggests a new paradigm for the design of such neuromorphic
circuits. This is an exciting avenue for future research.
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Figure 4.6: Input current i and the resulting membrane voltage v for the FitzHugh Nagumo
neuron, demonstrating an excitable threshold above which behavior switches from passive to
spiking. Algorithmic parameters are a step size of α = 0.05, convergence tolerance of ε = 0.01 and
5000 time steps.
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5C O N C L U S I O N S

5 .1 summary

This thesis has introduced new methods in input/output systems theory. These methods
rely primarily on two novel connections: the connection between the Scaled Relative
Graph and the Nyquist diagram; and the connection between the splitting algorithms of
monotone operator theory and series/parallel electrical circuits.

Chapter 2 develops the Scaled Relative Graph (SRG) of Ryu, Hannah, and Yin [48] as a
tool for systems theory. The SRG is shown to generalize the Nyquist diagram [9] and the
incremental disc [30] to arbitrary nonlinear operators. Using a homotopy argument, we
are able to infer the stability of a negative feedback interconnection from the separation
of two SRGs. This amounts to verifying non-zero incremental gain of the inverse of the
feedback interconnection. Special cases of this theorem include the Nyquist criterion for
stable transfer functions, the incremental circle criterion, the incremental small gain and
passivity theorems, the incremental secant condition and a novel “rolled-off passivity”
theorem. The graphical theorem furthermore gives a natural definition of an incremental
robustness margin (the distance between two SRGs, or the minimum incremental gain of
the inverse of the feedback interconnection), and allows an incremental gain bound to
be computed for the closed loop. To the best of the author’s knowledge, this theorem
represents the state of the art in incremental stability analysis; furthermore, it lends
graphical intuition to a wide range of existing incremental stability results.

Chapter 3 develops new methods for solving the steady state behavior of circuits
composed of monotone elements. Monotonicity is a generalization of the linear property
of passivity, and is the foundation of the theory of large-scale, first order convex opti-
mization. Given a circuit whose interconnections are either all series or all parallel, its
steady state behavior can be written as the zero of a sum of monotone operators. Such
a zero can be found with a direct application of a splitting algorithm. Given a circuit
which contains both series and parallel interconnections, its steady state behavior is the
zero of an operator formed by sums and inverses of the circuit components. We propose a
new algorithm, the nested forward-backward algorithm, which solves problems with this
structure.

Chapter 4 extends the methods of Chapter 3 to circuits composed of the difference of
monotone elements. The steady state behavior of such a circuit can be solved using an
adaptation of Difference of Convex (DC) Programming, by iteratively solving a sequence of
monotone zero-finding problems. These circuits exhibit a much wider range of steady-
state behaviors, including the oscillatory behavior of the van der Pol oscillator and the
excitable rest/spike threshold of the FitzHugh-Nagumo model. These two circuits have a
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mixed feedback structure – they consist of a passive, LTI dynamic component in feedback
with the difference of two static, monotone components. We propose a new splitting
algorithm, Difference-of-Monotone Douglas-Rachford, which matches this circuits structure,
and replaces a sequence of zero-finding problems with a single zero-finding problem.

5 .2 outlook

We conclude this thesis with some ideas for future research.

There are several avenues for developing the tools presented in this thesis. In many
cases, SRGs remain difficult to compute, and efficient algorithms for both the estimation
and analytical computation of SRGs would be a useful addition to the theory. Promising
avenues include estimation techniques from nonlinear spectral theory, and automated
graphical operations using methods from computational geometry.

There are also some immediate developments that can be made to the monotone
operator methods presented in this thesis. The two splitting algorithms proposed in this
thesis rely on replacing an inverse with a single-step approximate inverse. We have only
presented the most elementary applications of this idea, but we anticipate an entire class
of “nested” splitting algorithms. It will be particularly interesting to see whether the
favourable convergence properties of the Douglas-Rachford algorithm can be carried
over to the nested setting. A more speculative question is whether there exist splitting
algorithms which correspond to circuit structures more general than series/parallel.

A natural question is how broad the class of monotone one-port circuits is. Can any
monotone operator be approximated by such a circuit? An algorithm for constructing
such an approximate circuit on the basis of data would find applications in analog
machine learning, giving a direct, passive hardware implementation of a model. The
physical intuition given by the realization is also practical. It suggests, for example, a
natural model reduction strategy – simply removing the circuit elements furthest from
the port terminals (algebraically, this corresponds to truncating a continued fraction
expansion).

LTI systems map sinusoids into sinusoids – this makes the sinusoid the natural test
signal for characterizing an LTI system. Similarly, static nonlinearities map square waves
into square waves. This fact leads to the characterization of the SRG of a saturation
given in Chapter 2. The idea can be formalized in the language of wavelets: a static
nonlinearity is a transfer function on the space of Haar wavelets (and, in fact, is completely
characterized by its action on the first two wavelets of the Haar system, making it “low-
pass” in an amplitude sense). This raises two questions: can other types of systems be
neatly described by choosing an appropriate wavelet; and is there a basis which allows
both LTIs and static nonlinearities to be conveniently analyzed simultaneously?

Perhaps the most promising avenue for future research is the development of the
theory of difference-of-monotone oscillators. Such systems are unstable, and thus do
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5 .2 outlook

not define operators. Their inverses, however, are the difference of monotone operators,
and the methods of Chapter 4 have shown that this fact can be exploited for efficient
simulation. The natural question is whether the monotone/anti-monotone structure of
the inverse can be also be exploited for analysis and design.
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